Retrieval Precision¶
Module Interface¶
- class torchmetrics.retrieval.RetrievalPrecision(empty_target_action='neg', ignore_index=None, top_k=None, adaptive_k=False, aggregation='mean', **kwargs)[source]¶
Compute IR Precision.
Works with binary target data. Accepts float predictions from a model output.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A float tensor of shape(N, ...)
target
(Tensor
): A long or bool tensor of shape(N, ...)
indexes
(Tensor
): A long tensor of shape(N, ...)
which indicate to which query a prediction belongs
As output to
forward
andcompute
the metric returns the following output:p@k
(Tensor
): A single-value tensor with the precision (attop_k
) of the predictionspreds
w.r.t. the labelstarget
All
indexes
,preds
andtarget
must have the same dimension and will be flatten at the beginning, so that for example, a tensor of shape(N, M)
is treated as(N * M, )
. Predictions will be first grouped byindexes
and then will be computed as the mean of the metric over each query.- Parameters:
Specify what to do with queries that do not have at least a positive
target
. Choose from:'neg'
: those queries count as0.0
(default)'pos'
: those queries count as1.0
'skip'
: skip those queries; if all queries are skipped,0.0
is returned'error'
: raise aValueError
ignore_index¶ (
Optional
[int
]) – Ignore predictions where the target is equal to this number.top_k¶ (
Optional
[int
]) – Consider only the top k elements for each query (default:None
, which considers them all)adaptive_k¶ (
bool
) – Adjusttop_k
tomin(k, number of documents)
for each queryaggregation¶ (
Union
[Literal
['mean'
,'median'
,'min'
,'max'
],Callable
]) –Specify how to aggregate over indexes. Can either a custom callable function that takes in a single tensor and returns a scalar value or one of the following strings:
'mean'
: average value is returned'median'
: median value is returned'max'
: max value is returned'min'
: min value is returned
kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Raises:
ValueError – If
empty_target_action
is not one oferror
,skip
,neg
orpos
.ValueError – If
ignore_index
is not None or an integer.ValueError – If
top_k
is notNone
or not an integer greater than 0.ValueError – If
adaptive_k
is not boolean.
Example
>>> from torch import tensor >>> from torchmetrics.retrieval import RetrievalPrecision >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1]) >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2]) >>> target = tensor([False, False, True, False, True, False, True]) >>> p2 = RetrievalPrecision(top_k=2) >>> p2(preds, target, indexes=indexes) tensor(0.5000)
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> import torch >>> from torchmetrics.retrieval import RetrievalPrecision >>> # Example plotting a single value >>> metric = RetrievalPrecision() >>> metric.update(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,))) >>> fig_, ax_ = metric.plot()
>>> import torch >>> from torchmetrics.retrieval import RetrievalPrecision >>> # Example plotting multiple values >>> metric = RetrievalPrecision() >>> values = [] >>> for _ in range(10): ... values.append(metric(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,)))) >>> fig, ax = metric.plot(values)
Functional Interface¶
- torchmetrics.functional.retrieval.retrieval_precision(preds, target, top_k=None, adaptive_k=False)[source]¶
Compute the precision metric for information retrieval.
Precision is the fraction of relevant documents among all the retrieved documents.
preds
andtarget
should be of the same shape and live on the same device. If notarget
isTrue
,0
is returned.target
must be either bool or integers andpreds
must befloat
, otherwise an error is raised. If you want to measure Precision@K,top_k
must be a positive integer.- Parameters:
preds¶ (
Tensor
) – estimated probabilities of each document to be relevant.target¶ (
Tensor
) – ground truth about each document being relevant or not.top_k¶ (
Optional
[int
]) – consider only the top k elements (default:None
, which considers them all)adaptive_k¶ (
bool
) – adjust k to min(k, number of documents) for each query
- Return type:
- Returns:
- A single-value tensor with the precision (at
top_k
) of the predictionspreds
w.r.t. the labels target
.
- A single-value tensor with the precision (at
- Raises:
ValueError – If
top_k
is not None or an integer larger than 0.ValueError – If
adaptive_k
is not boolean.
Example
>>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> retrieval_precision(preds, target, top_k=2) tensor(0.5000)