Mean Squared Log Error (MSLE)

Module Interface

class torchmetrics.MeanSquaredLogError(**kwargs)[source]

Compute mean squared logarithmic error (MSLE).

\[\text{MSLE} = \frac{1}{N}\sum_i^N (\log_e(1 + y_i) - \log_e(1 + \hat{y_i}))^2\]

Where \(y\) is a tensor of target values, and \(\hat{y}\) is a tensor of predictions.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): Predictions from model

  • target (Tensor): Ground truth values

As output of forward and compute the metric returns the following output:

  • mean_squared_log_error (Tensor): A tensor with the mean squared log error

Parameters:

kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torch import tensor
>>> from torchmetrics.regression import MeanSquaredLogError
>>> target = tensor([2.5, 5, 4, 8])
>>> preds = tensor([3, 5, 2.5, 7])
>>> mean_squared_log_error = MeanSquaredLogError()
>>> mean_squared_log_error(preds, target)
tensor(0.0397)

Note

Half precision is only support on GPU for this metric

plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import MeanSquaredLogError
>>> metric = MeanSquaredLogError()
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()
../_images/mean_squared_log_error-1.png
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import MeanSquaredLogError
>>> metric = MeanSquaredLogError()
>>> values = []
>>> for _ in range(10):
...     values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)
../_images/mean_squared_log_error-2.png

Functional Interface

torchmetrics.functional.mean_squared_log_error(preds, target)[source]

Compute mean squared log error.

Parameters:
  • preds (Tensor) – estimated labels

  • target (Tensor) – ground truth labels

Return type:

Tensor

Returns:

Tensor with RMSLE

Example

>>> from torchmetrics.functional.regression import mean_squared_log_error
>>> x = torch.tensor([0., 1, 2, 3])
>>> y = torch.tensor([0., 1, 2, 2])
>>> mean_squared_log_error(x, y)
tensor(0.0207)

Note

Half precision is only support on GPU for this metric