Maximum¶
Module Interface¶
- class torchmetrics.aggregation.MaxMetric(nan_strategy='warn', **kwargs)[source]¶
Aggregate a stream of value into their maximum value.
As input to
forward
andupdate
the metric accepts the following inputAs output of forward and compute the metric returns the following output
agg
(Tensor
): scalar float tensor with aggregated maximum value over all inputs received
- Parameters:
nan_strategy¶ (
Union
[str
,float
]) – options: -'error'
: if any nan values are encountered will give a RuntimeError -'warn'
: if any nan values are encountered will give a warning and continue -'ignore'
: all nan values are silently removed - a float: if a float is provided will impute any nan values with this valuekwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Raises:
ValueError – If
nan_strategy
is not one oferror
,warn
,ignore
or a float
Example
>>> from torch import tensor >>> from torchmetrics.aggregation import MaxMetric >>> metric = MaxMetric() >>> metric.update(1) >>> metric.update(tensor([2, 3])) >>> metric.compute() tensor(3.)
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> from torchmetrics.aggregation import MaxMetric >>> metric = MaxMetric() >>> metric.update([1, 2, 3]) >>> fig_, ax_ = metric.plot()
>>> # Example plotting multiple values >>> from torchmetrics.aggregation import MaxMetric >>> metric = MaxMetric() >>> values = [ ] >>> for i in range(10): ... values.append(metric(i)) >>> fig_, ax_ = metric.plot(values)