torchmetrics.utilities

In the following is listed public utility functions that may be beneficial to use in your own code. These functions are not part of the public API and may change at any time.

torchmetrics.utilities.data

The data utilities are used to help with data manipulation, such as converting labels in classification from one format to another.

select_topk

torchmetrics.utilities.data.select_topk(prob_tensor, topk=1, dim=1)[source]

Convert a probability tensor to binary by selecting top-k the highest entries.

Parameters:
  • prob_tensor (Tensor) – dense tensor of shape [..., C, ...], where C is in the position defined by the dim argument

  • topk (int) – number of the highest entries to turn into 1s

  • dim (int) – dimension on which to compare entries

Return type:

Tensor

Returns:

A binary tensor of the same shape as the input tensor of type torch.int32

Example

>>> x = torch.tensor([[1.1, 2.0, 3.0], [2.0, 1.0, 0.5]])
>>> select_topk(x, topk=2)
tensor([[0, 1, 1],
        [1, 1, 0]], dtype=torch.int32)

to_categorical

torchmetrics.utilities.data.to_categorical(x, argmax_dim=1)[source]

Convert a tensor of probabilities to a dense label tensor.

Parameters:
  • x (Tensor) – probabilities to get the categorical label [N, d1, d2, …]

  • argmax_dim (int) – dimension to apply

Return type:

Tensor

Returns:

A tensor with categorical labels [N, d2, …]

Example

>>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]])
>>> to_categorical(x)
tensor([1, 0])

to_onehot

torchmetrics.utilities.data.to_onehot(label_tensor, num_classes=None)[source]

Convert a dense label tensor to one-hot format.

Parameters:
  • label_tensor (Tensor) – dense label tensor, with shape [N, d1, d2, …]

  • num_classes (Optional[int]) – number of classes C

Return type:

Tensor

Returns:

A sparse label tensor with shape [N, C, d1, d2, …]

Example

>>> x = torch.tensor([1, 2, 3])
>>> to_onehot(x)
tensor([[0, 1, 0, 0],
        [0, 0, 1, 0],
        [0, 0, 0, 1]])

dim_zero_cat

torchmetrics.utilities.data.dim_zero_cat(x)[source]

Concatenation along the zero dimension.

Return type:

Tensor

dim_zero_max

torchmetrics.utilities.data.dim_zero_max(x)[source]

Max along the zero dimension.

Return type:

Tensor

dim_zero_mean

torchmetrics.utilities.data.dim_zero_mean(x)[source]

Average along the zero dimension.

Return type:

Tensor

dim_zero_min

torchmetrics.utilities.data.dim_zero_min(x)[source]

Min along the zero dimension.

Return type:

Tensor

dim_zero_sum

torchmetrics.utilities.data.dim_zero_sum(x)[source]

Summation along the zero dimension.

Return type:

Tensor

torchmetrics.utilities.distributed

The distributed utilities are used to help with synchronization of metrics across multiple processes.

gather_all_tensors

torchmetrics.utilities.distributed.gather_all_tensors(result, group=None)[source]

Gather all tensors from several ddp processes onto a list that is broadcast to all processes.

Works on tensors that have the same number of dimensions, but where each dimension may differ. In this case tensors are padded, gathered and then trimmed to secure equal workload for all processes.

Parameters:
  • result (Tensor) – the value to sync

  • group (Optional[Any]) – the process group to gather results from. Defaults to all processes (world)

Return type:

List[Tensor]

Returns:

list with size equal to the process group where element i corresponds to result tensor from process i

torchmetrics.utilities.exceptions

TorchMetricsUserError

class torchmetrics.utilities.exceptions.TorchMetricsUserError[source]

Error used to inform users of a wrong combination of Metric API calls.

TorchMetricsUserWarning

class torchmetrics.utilities.exceptions.TorchMetricsUserWarning[source]

Error used to inform users of specific warnings due to the torchmetrics API.