Stat Scores¶
Module Interface¶
- class torchmetrics.StatScores(**kwargs)[source]¶
Compute the number of true positives, false positives, true negatives, false negatives and the support.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'binary'
,'multiclass'
ormultilabel
. See the documentation ofBinaryStatScores
,MulticlassStatScores
andMultilabelStatScores
for the specific details of each argument influence and examples.- Legacy Example:
>>> from torch import tensor >>> preds = tensor([1, 0, 2, 1]) >>> target = tensor([1, 1, 2, 0]) >>> stat_scores = StatScores(task="multiclass", num_classes=3, average='micro') >>> stat_scores(preds, target) tensor([2, 2, 6, 2, 4]) >>> stat_scores = StatScores(task="multiclass", num_classes=3, average=None) >>> stat_scores(preds, target) tensor([[0, 1, 2, 1, 1], [1, 1, 1, 1, 2], [1, 0, 3, 0, 1]])
BinaryStatScores¶
- class torchmetrics.classification.BinaryStatScores(threshold=0.5, multidim_average='global', ignore_index=None, validate_args=True, **kwargs)[source]¶
Compute true positives, false positives, true negatives, false negatives and the support for binary tasks.
Related to Type I and Type II errors.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): An int or float tensor of shape(N, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value inthreshold
.target
(Tensor
): An int tensor of shape(N, ...)
As output to
forward
andcompute
the metric returns the following output:bss
(Tensor
): A tensor of shape(..., 5)
, where the last dimension corresponds to[tp, fp, tn, fn, sup]
(sup
stands for support and equalstp + fn
). The shape depends on themultidim_average
parameter:If
multidim_average
is set toglobal
, the shape will be(5,)
If
multidim_average
is set tosamplewise
, the shape will be(N, 5)
If
multidim_average
is set tosamplewise
we expect at least one additional dimension...
to be present, which the reduction will then be applied over instead of the sample dimensionN
.- Parameters:
threshold¶ (
float
) – Threshold for transforming probability to binary {0,1} predictionsmultidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.classification import BinaryStatScores >>> target = tensor([0, 1, 0, 1, 0, 1]) >>> preds = tensor([0, 0, 1, 1, 0, 1]) >>> metric = BinaryStatScores() >>> metric(preds, target) tensor([2, 1, 2, 1, 3])
- Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryStatScores >>> target = tensor([0, 1, 0, 1, 0, 1]) >>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) >>> metric = BinaryStatScores() >>> metric(preds, target) tensor([2, 1, 2, 1, 3])
- Example (multidim tensors):
>>> from torchmetrics.classification import BinaryStatScores >>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) >>> metric = BinaryStatScores(multidim_average='samplewise') >>> metric(preds, target) tensor([[2, 3, 0, 1, 3], [0, 2, 1, 3, 3]])
MulticlassStatScores¶
- class torchmetrics.classification.MulticlassStatScores(num_classes=None, top_k=1, average='macro', multidim_average='global', ignore_index=None, validate_args=True, **kwargs)[source]¶
Computes true positives, false positives, true negatives, false negatives and the support for multiclass tasks.
Related to Type I and Type II errors.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): An int tensor of shape(N, ...)
or float tensor of shape(N, C, ..)
. If preds is a floating point we applytorch.argmax
along theC
dimension to automatically convert probabilities/logits into an int tensor.target
(Tensor
): An int tensor of shape(N, ...)
As output to
forward
andcompute
the metric returns the following output:mcss
(Tensor
): A tensor of shape(..., 5)
, where the last dimension corresponds to[tp, fp, tn, fn, sup]
(sup
stands for support and equalstp + fn
). The shape depends onaverage
andmultidim_average
parameters:If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the shape will be(5,)
If
average=None/'none'
, the shape will be(C, 5)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N, 5)
If
average=None/'none'
, the shape will be(N, C, 5)
If
multidim_average
is set tosamplewise
we expect at least one additional dimension...
to be present, which the reduction will then be applied over instead of the sample dimensionN
.- Parameters:
num_classes¶ (
Optional
[int
]) – Integer specifying the number of classesaverage¶ (
Optional
[Literal
['micro'
,'macro'
,'weighted'
,'none'
]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: calculates statistics for each label and computes weighted average using their support"none"
orNone
: calculates statistic for each label and applies no reduction
top_k¶ (
int
) – Number of highest probability or logit score predictions considered to find the correct label. Only works whenpreds
contain probabilities/logits.multidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.classification import MulticlassStatScores >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([2, 1, 0, 1]) >>> metric = MulticlassStatScores(num_classes=3, average='micro') >>> metric(preds, target) tensor([3, 1, 7, 1, 4]) >>> mcss = MulticlassStatScores(num_classes=3, average=None) >>> mcss(preds, target) tensor([[1, 0, 2, 1, 2], [1, 1, 2, 0, 1], [1, 0, 3, 0, 1]])
- Example (preds is float tensor):
>>> from torchmetrics.classification import MulticlassStatScores >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([[0.16, 0.26, 0.58], ... [0.22, 0.61, 0.17], ... [0.71, 0.09, 0.20], ... [0.05, 0.82, 0.13]]) >>> metric = MulticlassStatScores(num_classes=3, average='micro') >>> metric(preds, target) tensor([3, 1, 7, 1, 4]) >>> mcss = MulticlassStatScores(num_classes=3, average=None) >>> mcss(preds, target) tensor([[1, 0, 2, 1, 2], [1, 1, 2, 0, 1], [1, 0, 3, 0, 1]])
- Example (multidim tensors):
>>> from torchmetrics.classification import MulticlassStatScores >>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) >>> metric = MulticlassStatScores(num_classes=3, multidim_average="samplewise", average='micro') >>> metric(preds, target) tensor([[3, 3, 9, 3, 6], [2, 4, 8, 4, 6]]) >>> mcss = MulticlassStatScores(num_classes=3, multidim_average="samplewise", average=None) >>> mcss(preds, target) tensor([[[2, 1, 3, 0, 2], [0, 1, 3, 2, 2], [1, 1, 3, 1, 2]], [[0, 1, 4, 1, 1], [1, 1, 2, 2, 3], [1, 2, 2, 1, 2]]])
MultilabelStatScores¶
- class torchmetrics.classification.MultilabelStatScores(num_labels, threshold=0.5, average='macro', multidim_average='global', ignore_index=None, validate_args=True, **kwargs)[source]¶
Compute true positives, false positives, true negatives, false negatives and the support for multilabel tasks.
Related to Type I and Type II errors.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): An int or float tensor of shape(N, C, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value inthreshold
.target
(Tensor
): An int tensor of shape(N, C, ...)
As output to
forward
andcompute
the metric returns the following output:mlss
(Tensor
): A tensor of shape(..., 5)
, where the last dimension corresponds to[tp, fp, tn, fn, sup]
(sup
stands for support and equalstp + fn
). The shape depends onaverage
andmultidim_average
parameters:If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the shape will be(5,)
If
average=None/'none'
, the shape will be(C, 5)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N, 5)
If
average=None/'none'
, the shape will be(N, C, 5)
If
multidim_average
is set tosamplewise
we expect at least one additional dimension...
to be present, which the reduction will then be applied over instead of the sample dimensionN
.- Parameters:
threshold¶ (
float
) – Threshold for transforming probability to binary (0,1) predictionsaverage¶ (
Optional
[Literal
['micro'
,'macro'
,'weighted'
,'none'
]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: calculates statistics for each label and computes weighted average using their support"none"
orNone
: calculates statistic for each label and applies no reduction
multidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.classification import MultilabelStatScores >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0, 0, 1], [1, 0, 1]]) >>> metric = MultilabelStatScores(num_labels=3, average='micro') >>> metric(preds, target) tensor([2, 1, 2, 1, 3]) >>> mlss = MultilabelStatScores(num_labels=3, average=None) >>> mlss(preds, target) tensor([[1, 0, 1, 0, 1], [0, 0, 1, 1, 1], [1, 1, 0, 0, 1]])
- Example (preds is float tensor):
>>> from torchmetrics.classification import MultilabelStatScores >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) >>> metric = MultilabelStatScores(num_labels=3, average='micro') >>> metric(preds, target) tensor([2, 1, 2, 1, 3]) >>> mlss = MultilabelStatScores(num_labels=3, average=None) >>> mlss(preds, target) tensor([[1, 0, 1, 0, 1], [0, 0, 1, 1, 1], [1, 1, 0, 0, 1]])
- Example (multidim tensors):
>>> from torchmetrics.classification import MultilabelStatScores >>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) >>> metric = MultilabelStatScores(num_labels=3, multidim_average='samplewise', average='micro') >>> metric(preds, target) tensor([[2, 3, 0, 1, 3], [0, 2, 1, 3, 3]]) >>> mlss = MultilabelStatScores(num_labels=3, multidim_average='samplewise', average=None) >>> mlss(preds, target) tensor([[[1, 1, 0, 0, 1], [1, 1, 0, 0, 1], [0, 1, 0, 1, 1]], [[0, 0, 0, 2, 2], [0, 2, 0, 0, 0], [0, 0, 1, 1, 1]]])
Functional Interface¶
stat_scores¶
- torchmetrics.functional.stat_scores(preds, target, task, threshold=0.5, num_classes=None, num_labels=None, average='micro', multidim_average='global', top_k=1, ignore_index=None, validate_args=True)[source]¶
Compute the number of true positives, false positives, true negatives, false negatives and the support.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'binary'
,'multiclass'
ormultilabel
. See the documentation ofbinary_stat_scores()
,multiclass_stat_scores()
andmultilabel_stat_scores()
for the specific details of each argument influence and examples.- Return type:
- Legacy Example:
>>> from torch import tensor >>> preds = tensor([1, 0, 2, 1]) >>> target = tensor([1, 1, 2, 0]) >>> stat_scores(preds, target, task='multiclass', num_classes=3, average='micro') tensor([2, 2, 6, 2, 4]) >>> stat_scores(preds, target, task='multiclass', num_classes=3, average=None) tensor([[0, 1, 2, 1, 1], [1, 1, 1, 1, 2], [1, 0, 3, 0, 1]])
binary_stat_scores¶
- torchmetrics.functional.classification.binary_stat_scores(preds, target, threshold=0.5, multidim_average='global', ignore_index=None, validate_args=True)[source]¶
Compute the true positives, false positives, true negatives, false negatives, support for binary tasks.
Related to Type I and Type II errors.
Accepts the following input tensors:
preds
(int or float tensor):(N, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value inthreshold
.target
(int tensor):(N, ...)
- Parameters:
threshold¶ (
float
) – Threshold for transforming probability to binary {0,1} predictionsmultidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Return type:
- Returns:
The metric returns a tensor of shape
(..., 5)
, where the last dimension corresponds to[tp, fp, tn, fn, sup]
(sup
stands for support and equalstp + fn
). The shape depends on themultidim_average
parameter:If
multidim_average
is set toglobal
, the shape will be(5,)
If
multidim_average
is set tosamplewise
, the shape will be(N, 5)
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.functional.classification import binary_stat_scores >>> target = tensor([0, 1, 0, 1, 0, 1]) >>> preds = tensor([0, 0, 1, 1, 0, 1]) >>> binary_stat_scores(preds, target) tensor([2, 1, 2, 1, 3])
- Example (preds is float tensor):
>>> from torchmetrics.functional.classification import binary_stat_scores >>> target = tensor([0, 1, 0, 1, 0, 1]) >>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) >>> binary_stat_scores(preds, target) tensor([2, 1, 2, 1, 3])
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import binary_stat_scores >>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) >>> binary_stat_scores(preds, target, multidim_average='samplewise') tensor([[2, 3, 0, 1, 3], [0, 2, 1, 3, 3]])
multiclass_stat_scores¶
- torchmetrics.functional.classification.multiclass_stat_scores(preds, target, num_classes, average='macro', top_k=1, multidim_average='global', ignore_index=None, validate_args=True)[source]¶
Compute the true positives, false positives, true negatives, false negatives and support for multiclass tasks.
Related to Type I and Type II errors.
Accepts the following input tensors:
preds
:(N, ...)
(int tensor) or(N, C, ..)
(float tensor). If preds is a floating point we applytorch.argmax
along theC
dimension to automatically convert probabilities/logits into an int tensor.target
(int tensor):(N, ...)
- Parameters:
num_classes¶ (
int
) – Integer specifying the number of classesaverage¶ (
Optional
[Literal
['micro'
,'macro'
,'weighted'
,'none'
]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: calculates statistics for each label and computes weighted average using their support"none"
orNone
: calculates statistic for each label and applies no reduction
top_k¶ (
int
) – Number of highest probability or logit score predictions considered to find the correct label. Only works whenpreds
contain probabilities/logits.multidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Return type:
- Returns:
The metric returns a tensor of shape
(..., 5)
, where the last dimension corresponds to[tp, fp, tn, fn, sup]
(sup
stands for support and equalstp + fn
). The shape depends onaverage
andmultidim_average
parameters:If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the shape will be(5,)
If
average=None/'none'
, the shape will be(C, 5)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N, 5)
If
average=None/'none'
, the shape will be(N, C, 5)
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.functional.classification import multiclass_stat_scores >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([2, 1, 0, 1]) >>> multiclass_stat_scores(preds, target, num_classes=3, average='micro') tensor([3, 1, 7, 1, 4]) >>> multiclass_stat_scores(preds, target, num_classes=3, average=None) tensor([[1, 0, 2, 1, 2], [1, 1, 2, 0, 1], [1, 0, 3, 0, 1]])
- Example (preds is float tensor):
>>> from torchmetrics.functional.classification import multiclass_stat_scores >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([[0.16, 0.26, 0.58], ... [0.22, 0.61, 0.17], ... [0.71, 0.09, 0.20], ... [0.05, 0.82, 0.13]]) >>> multiclass_stat_scores(preds, target, num_classes=3, average='micro') tensor([3, 1, 7, 1, 4]) >>> multiclass_stat_scores(preds, target, num_classes=3, average=None) tensor([[1, 0, 2, 1, 2], [1, 1, 2, 0, 1], [1, 0, 3, 0, 1]])
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import multiclass_stat_scores >>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) >>> multiclass_stat_scores(preds, target, num_classes=3, multidim_average='samplewise', average='micro') tensor([[3, 3, 9, 3, 6], [2, 4, 8, 4, 6]]) >>> multiclass_stat_scores(preds, target, num_classes=3, multidim_average='samplewise', average=None) tensor([[[2, 1, 3, 0, 2], [0, 1, 3, 2, 2], [1, 1, 3, 1, 2]], [[0, 1, 4, 1, 1], [1, 1, 2, 2, 3], [1, 2, 2, 1, 2]]])
multilabel_stat_scores¶
- torchmetrics.functional.classification.multilabel_stat_scores(preds, target, num_labels, threshold=0.5, average='macro', multidim_average='global', ignore_index=None, validate_args=True)[source]¶
Compute the true positives, false positives, true negatives, false negatives and support for multilabel tasks.
Related to Type I and Type II errors.
Accepts the following input tensors:
preds
(int or float tensor):(N, C, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value inthreshold
.target
(int tensor):(N, C, ...)
- Parameters:
threshold¶ (
float
) – Threshold for transforming probability to binary (0,1) predictionsaverage¶ (
Optional
[Literal
['micro'
,'macro'
,'weighted'
,'none'
]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: calculates statistics for each label and computes weighted average using their support"none"
orNone
: calculates statistic for each label and applies no reduction
multidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Return type:
- Returns:
The metric returns a tensor of shape
(..., 5)
, where the last dimension corresponds to[tp, fp, tn, fn, sup]
(sup
stands for support and equalstp + fn
). The shape depends onaverage
andmultidim_average
parameters:If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the shape will be(5,)
If
average=None/'none'
, the shape will be(C, 5)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N, 5)
If
average=None/'none'
, the shape will be(N, C, 5)
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.functional.classification import multilabel_stat_scores >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0, 0, 1], [1, 0, 1]]) >>> multilabel_stat_scores(preds, target, num_labels=3, average='micro') tensor([2, 1, 2, 1, 3]) >>> multilabel_stat_scores(preds, target, num_labels=3, average=None) tensor([[1, 0, 1, 0, 1], [0, 0, 1, 1, 1], [1, 1, 0, 0, 1]])
- Example (preds is float tensor):
>>> from torchmetrics.functional.classification import multilabel_stat_scores >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) >>> multilabel_stat_scores(preds, target, num_labels=3, average='micro') tensor([2, 1, 2, 1, 3]) >>> multilabel_stat_scores(preds, target, num_labels=3, average=None) tensor([[1, 0, 1, 0, 1], [0, 0, 1, 1, 1], [1, 1, 0, 0, 1]])
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import multilabel_stat_scores >>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) >>> multilabel_stat_scores(preds, target, num_labels=3, multidim_average='samplewise', average='micro') tensor([[2, 3, 0, 1, 3], [0, 2, 1, 3, 3]]) >>> multilabel_stat_scores(preds, target, num_labels=3, multidim_average='samplewise', average=None) tensor([[[1, 1, 0, 0, 1], [1, 1, 0, 0, 1], [0, 1, 0, 1, 1]], [[0, 0, 0, 2, 2], [0, 2, 0, 0, 0], [0, 0, 1, 1, 1]]])