Sum

Module Interface

class torchmetrics.aggregation.SumMetric(nan_strategy='warn', **kwargs)[source]

Aggregate a stream of value into their sum.

As input to forward and update the metric accepts the following input

  • value (float or Tensor): a single float or an tensor of float values with arbitrary shape (...,).

As output of forward and compute the metric returns the following output

  • agg (Tensor): scalar float tensor with aggregated sum over all inputs received

Parameters:
  • nan_strategy (Union[str, float]) – options: - 'error': if any nan values are encountered will give a RuntimeError - 'warn': if any nan values are encountered will give a warning and continue - 'ignore': all nan values are silently removed - a float: if a float is provided will impute any nan values with this value

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Raises:

ValueError – If nan_strategy is not one of error, warn, ignore or a float

Example

>>>
>>> from torch import tensor
>>> from torchmetrics.aggregation import SumMetric
>>> metric = SumMetric()
>>> metric.update(1)
>>> metric.update(tensor([2, 3]))
>>> metric.compute()
tensor(6.)
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>>
>>> # Example plotting a single value
>>> from torchmetrics.aggregation import SumMetric
>>> metric = SumMetric()
>>> metric.update([1, 2, 3])
>>> fig_, ax_ = metric.plot()
../_images/sum-1.png
>>>
>>> # Example plotting multiple values
>>> from torch import rand, randint
>>> from torchmetrics.aggregation import SumMetric
>>> metric = SumMetric()
>>> values = [ ]
>>> for i in range(10):
...     values.append(metric([i, i+1]))
>>> fig_, ax_ = metric.plot(values)
../_images/sum-2.png