Cramer’s V¶
Module Interface¶
- class torchmetrics.nominal.CramersV(num_classes, bias_correction=True, nan_strategy='replace', nan_replace_value=0.0, **kwargs)[source]¶
Compute Cramer’s V statistic measuring the association between two categorical (nominal) data series.
\[V = \sqrt{\frac{\chi^2 / n}{\min(r - 1, k - 1)}}\]where
\[\chi^2 = \sum_{i,j} \ frac{\left(n_{ij} - \frac{n_{i.} n_{.j}}{n}\right)^2}{\frac{n_{i.} n_{.j}}{n}}\]where \(n_{ij}\) denotes the number of times the values \((A_i, B_j)\) are observed with \(A_i, B_j\) represent frequencies of values in
preds
andtarget
, respectively. Cramer’s V is a symmetric coefficient, i.e. \(V(preds, target) = V(target, preds)\), so order of input arguments does not matter. The output values lies in [0, 1] with 1 meaning the perfect association.As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): Either 1D or 2D tensor of categorical (nominal) data from the first data series with shape(batch_size,)
or(batch_size, num_classes)
, respectively.target
(Tensor
): Either 1D or 2D tensor of categorical (nominal) data from the second data series with shape(batch_size,)
or(batch_size, num_classes)
, respectively.
As output of
forward
andcompute
the metric returns the following output:cramers_v
(Tensor
): Scalar tensor containing the Cramer’s V statistic.
- Parameters:
num_classes¶ (
int
) – Integer specifying the number of classesbias_correction¶ (
bool
) – Indication of whether to use bias correction.nan_strategy¶ (
Literal
['replace'
,'drop'
]) – Indication of whether to replace or dropNaN
valuesnan_replace_value¶ (
Optional
[float
]) – Value to replaceNaN``s when ``nan_strategy = 'replace'
kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Raises:
ValueError – If nan_strategy is not one of ‘replace’ and ‘drop’
ValueError – If nan_strategy is equal to ‘replace’ and nan_replace_value is not an int or float
Example:
>>> from torch import randint, randn >>> from torchmetrics.nominal import CramersV >>> preds = randint(0, 4, (100,)) >>> target = (preds + randn(100)).round().clamp(0, 4) >>> cramers_v = CramersV(num_classes=5) >>> cramers_v(preds, target) tensor(0.5284)
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> import torch >>> from torchmetrics.nominal import CramersV >>> metric = CramersV(num_classes=5) >>> metric.update(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,))) >>> fig_, ax_ = metric.plot()
>>> # Example plotting multiple values >>> import torch >>> from torchmetrics.nominal import CramersV >>> metric = CramersV(num_classes=5) >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,)))) >>> fig_, ax_ = metric.plot(values)
Functional Interface¶
- torchmetrics.functional.nominal.cramers_v(preds, target, bias_correction=True, nan_strategy='replace', nan_replace_value=0.0)[source]¶
Compute Cramer’s V statistic measuring the association between two categorical (nominal) data series.
\[V = \sqrt{\frac{\chi^2 / n}{\min(r - 1, k - 1)}}\]where
\[\chi^2 = \sum_{i,j} \ frac{\left(n_{ij} - \frac{n_{i.} n_{.j}}{n}\right)^2}{\frac{n_{i.} n_{.j}}{n}}\]where \(n_{ij}\) denotes the number of times the values \((A_i, B_j)\) are observed with \(A_i, B_j\) represent frequencies of values in
preds
andtarget
, respectively.Cramer’s V is a symmetric coefficient, i.e. \(V(preds, target) = V(target, preds)\).
The output values lies in [0, 1] with 1 meaning the perfect association.
- Parameters:
preds¶ (
Tensor
) – 1D or 2D tensor of categorical (nominal) data - 1D shape: (batch_size,) - 2D shape: (batch_size, num_classes)target¶ (
Tensor
) – 1D or 2D tensor of categorical (nominal) data - 1D shape: (batch_size,) - 2D shape: (batch_size, num_classes)bias_correction¶ (
bool
) – Indication of whether to use bias correction.nan_strategy¶ (
Literal
['replace'
,'drop'
]) – Indication of whether to replace or dropNaN
valuesnan_replace_value¶ (
Optional
[float
]) – Value to replaceNaN``s when ``nan_strategy = 'replace'
- Return type:
- Returns:
Cramer’s V statistic
Example
>>> from torch import randint, round >>> from torchmetrics.functional.nominal import cramers_v >>> preds = randint(0, 4, (100,)) >>> target = round(preds + torch.randn(100)).clamp(0, 4) >>> cramers_v(preds, target) tensor(0.5284)
cramers_v_matrix¶
- torchmetrics.functional.nominal.cramers_v_matrix(matrix, bias_correction=True, nan_strategy='replace', nan_replace_value=0.0)[source]¶
Compute Cramer’s V statistic between a set of multiple variables.
This can serve as a convenient tool to compute Cramer’s V statistic for analyses of correlation between categorical variables in your dataset.
- Parameters:
matrix¶ (
Tensor
) – A tensor of categorical (nominal) data, where: - rows represent a number of data points - columns represent a number of categorical (nominal) featuresbias_correction¶ (
bool
) – Indication of whether to use bias correction.nan_strategy¶ (
Literal
['replace'
,'drop'
]) – Indication of whether to replace or dropNaN
valuesnan_replace_value¶ (
Optional
[float
]) – Value to replaceNaN``s when ``nan_strategy = 'replace'
- Return type:
- Returns:
Cramer’s V statistic for a dataset of categorical variables
Example
>>> from torch import randint >>> from torchmetrics.functional.nominal import cramers_v_matrix >>> matrix = randint(0, 4, (200, 5)) >>> cramers_v_matrix(matrix) tensor([[1.0000, 0.0637, 0.0000, 0.0542, 0.1337], [0.0637, 1.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000, 0.0649], [0.0542, 0.0000, 0.0000, 1.0000, 0.1100], [0.1337, 0.0000, 0.0649, 0.1100, 1.0000]])