Retrieval Mean Reciprocal Rank (MRR)¶
Module Interface¶
- class torchmetrics.retrieval.RetrievalMRR(empty_target_action='neg', ignore_index=None, top_k=None, aggregation='mean', **kwargs)[source]¶
Compute Mean Reciprocal Rank.
Works with binary target data. Accepts float predictions from a model output.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A float tensor of shape(N, ...)
target
(Tensor
): A long or bool tensor of shape(N, ...)
indexes
(Tensor
): A long tensor of shape(N, ...)
which indicate to which query a prediction belongs
As output to
forward
andcompute
the metric returns the following output:mrr@k
(Tensor
): A single-value tensor with the reciprocal rank (RR) of the predictionspreds
w.r.t. the labelstarget
.
All
indexes
,preds
andtarget
must have the same dimension and will be flatten at the beginning, so that for example, a tensor of shape(N, M)
is treated as(N * M, )
. Predictions will be first grouped byindexes
and then will be computed as the mean of the metric over each query.- Parameters:
Specify what to do with queries that do not have at least a positive
target
. Choose from:'neg'
: those queries count as0.0
(default)'pos'
: those queries count as1.0
'skip'
: skip those queries; if all queries are skipped,0.0
is returned'error'
: raise aValueError
ignore_index¶ (
Optional
[int
]) – Ignore predictions where the target is equal to this number.top_k¶ (
Optional
[int
]) – Consider only the top k elements for each query (default:None
, which considers them all)aggregation¶ (
Union
[Literal
['mean'
,'median'
,'min'
,'max'
],Callable
]) –Specify how to aggregate over indexes. Can either a custom callable function that takes in a single tensor and returns a scalar value or one of the following strings:
'mean'
: average value is returned'median'
: median value is returned'max'
: max value is returned'min'
: min value is returned
kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Raises:
ValueError – If
empty_target_action
is not one oferror
,skip
,neg
orpos
.ValueError – If
ignore_index
is not None or an integer.ValueError – If
top_k
is notNone
or not an integer greater than 0.
Example
>>> from torch import tensor >>> from torchmetrics.retrieval import RetrievalMRR >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1]) >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2]) >>> target = tensor([False, False, True, False, True, False, True]) >>> mrr = RetrievalMRR() >>> mrr(preds, target, indexes=indexes) tensor(0.7500)
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> import torch >>> from torchmetrics.retrieval import RetrievalMRR >>> # Example plotting a single value >>> metric = RetrievalMRR() >>> metric.update(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,))) >>> fig_, ax_ = metric.plot()
>>> import torch >>> from torchmetrics.retrieval import RetrievalMRR >>> # Example plotting multiple values >>> metric = RetrievalMRR() >>> values = [] >>> for _ in range(10): ... values.append(metric(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,)))) >>> fig, ax = metric.plot(values)
Functional Interface¶
- torchmetrics.functional.retrieval.retrieval_reciprocal_rank(preds, target, top_k=None)[source]¶
Compute reciprocal rank (for information retrieval). See Mean Reciprocal Rank.
preds
andtarget
should be of the same shape and live on the same device. If notarget
isTrue
, 0 is returned.target
must be either bool or integers andpreds
must befloat
, otherwise an error is raised.- Parameters:
- Return type:
- Returns:
a single-value tensor with the reciprocal rank (RR) of the predictions
preds
wrt the labelstarget
.- Raises:
ValueError – If
top_k
is notNone
or an integer larger than 0.
Example
>>> from torchmetrics.functional.retrieval import retrieval_reciprocal_rank >>> preds = torch.tensor([0.2, 0.3, 0.5]) >>> target = torch.tensor([False, True, False]) >>> retrieval_reciprocal_rank(preds, target) tensor(0.5000)