Label Ranking Loss¶
Module Interface¶
- class torchmetrics.classification.MultilabelRankingLoss(num_labels, ignore_index=None, validate_args=True, **kwargs)[source]¶
Compute the label ranking loss for multilabel data [1].
The score is corresponds to the average number of label pairs that are incorrectly ordered given some predictions weighted by the size of the label set and the number of labels not in the label set. The best score is 0.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A float tensor of shape(N, C, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.target
(Tensor
): An int tensor of shape(N, C, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).
Tip
Additional dimension
...
will be flattened into the batch dimension.As output to
forward
andcompute
the metric returns the following output:mlrl
(Tensor
): A tensor containing the multilabel ranking loss.
- Parameters:
preds¶ – Tensor with predictions
target¶ – Tensor with true labels
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
Example
>>> from torch import rand, randint >>> from torchmetrics.classification import MultilabelRankingLoss >>> preds = rand(10, 5) >>> target = randint(2, (10, 5)) >>> mlrl = MultilabelRankingLoss(num_labels=5) >>> mlrl(preds, target) tensor(0.4167)
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure object and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> from torch import rand, randint >>> # Example plotting a single value >>> from torchmetrics.classification import MultilabelRankingLoss >>> metric = MultilabelRankingLoss(num_labels=3) >>> metric.update(rand(20, 3), randint(2, (20, 3))) >>> fig_, ax_ = metric.plot()
>>> from torch import rand, randint >>> # Example plotting multiple values >>> from torchmetrics.classification import MultilabelRankingLoss >>> metric = MultilabelRankingLoss(num_labels=3) >>> values = [ ] >>> for _ in range(10): ... values.append(metric(rand(20, 3), randint(2, (20, 3)))) >>> fig_, ax_ = metric.plot(values)
Functional Interface¶
- torchmetrics.functional.classification.multilabel_ranking_loss(preds, target, num_labels, ignore_index=None, validate_args=True)[source]¶
Compute the label ranking loss for multilabel data [1].
The score is corresponds to the average number of label pairs that are incorrectly ordered given some predictions weighted by the size of the label set and the number of labels not in the label set. The best score is 0.
Accepts the following input tensors:
preds
(float tensor):(N, C, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.target
(int tensor):(N, C, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).
Additional dimension
...
will be flattened into the batch dimension.- Parameters:
- Return type:
Example
>>> from torch import rand, randint >>> from torchmetrics.functional.classification import multilabel_ranking_loss >>> preds = rand(10, 5) >>> target = randint(2, (10, 5)) >>> multilabel_ranking_loss(preds, target, num_labels=5) tensor(0.4167)
References
[1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US.