Multi-Scale SSIM

Module Interface

class torchmetrics.image.MultiScaleStructuralSimilarityIndexMeasure(gaussian_kernel=True, kernel_size=11, sigma=1.5, reduction='elementwise_mean', data_range=None, k1=0.01, k2=0.03, betas=(0.0448, 0.2856, 0.3001, 0.2363, 0.1333), normalize='relu', **kwargs)[source]

Compute MultiScaleSSIM, Multi-scale Structural Similarity Index Measure.

This metric is is a generalization of Structural Similarity Index Measure by incorporating image details at different resolution scores.

As input to forward and update the metric accepts the following input

  • preds (Tensor): Predictions from model

  • target (Tensor): Ground truth values

As output of forward and compute the metric returns the following output

  • msssim (Tensor): if reduction!='none' returns float scalar tensor with average MSSSIM value over sample else returns tensor of shape (N,) with SSIM values per sample

Parameters:
  • gaussian_kernel (bool) – If True (default), a gaussian kernel is used, if false a uniform kernel is used

  • kernel_size (Union[int, Sequence[int]]) – size of the gaussian kernel

  • sigma (Union[float, Sequence[float]]) – Standard deviation of the gaussian kernel

  • reduction (Literal['elementwise_mean', 'sum', 'none', None]) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean

    • 'sum': takes the sum

    • 'none' or None: no reduction will be applied

  • data_range (Union[float, tuple[float, float], None]) – the range of the data. If None, it is determined from the data (max - min). If a tuple is provided then the range is calculated as the difference and input is clamped between the values. The data_range must be given when dim is not None.

  • k1 (float) – Parameter of structural similarity index measure.

  • k2 (float) – Parameter of structural similarity index measure.

  • betas (tuple[float, ...]) – Exponent parameters for individual similarities and contrastive sensitivities returned by different image resolutions.

  • normalize (Literal['relu', 'simple', None]) – When MultiScaleStructuralSimilarityIndexMeasure loss is used for training, it is desirable to use normalizes to improve the training stability. This normalize argument is out of scope of the original implementation [1], and it is adapted from https://github.com/jorge-pessoa/pytorch-msssim instead.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Returns:

Tensor with Multi-Scale SSIM score

Raises:
  • ValueError – If kernel_size is not an int or a Sequence of ints with size 2 or 3.

  • ValueError – If betas is not a tuple of floats with length 2.

  • ValueError – If normalize is neither None, ReLU nor simple.

Example

>>>
>>> from torch import rand
>>> from torchmetrics.image import MultiScaleStructuralSimilarityIndexMeasure
>>> preds = torch.rand([3, 3, 256, 256])
>>> target = preds * 0.75
>>> ms_ssim = MultiScaleStructuralSimilarityIndexMeasure(data_range=1.0)
>>> ms_ssim(preds, target)
tensor(0.9628)
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>>
>>> # Example plotting a single value
>>> from torch import rand
>>> from torchmetrics.image import MultiScaleStructuralSimilarityIndexMeasure
>>> preds = rand([3, 3, 256, 256])
>>> target = preds * 0.75
>>> metric = MultiScaleStructuralSimilarityIndexMeasure(data_range=1.0)
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
../_images/multi_scale_structural_similarity-1.png
>>>
>>> # Example plotting multiple values
>>> from torch import rand
>>> from torchmetrics.image import MultiScaleStructuralSimilarityIndexMeasure
>>> preds = rand([3, 3, 256, 256])
>>> target = preds * 0.75
>>> metric = MultiScaleStructuralSimilarityIndexMeasure(data_range=1.0)
>>> values = [ ]
>>> for _ in range(10):
...     values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
../_images/multi_scale_structural_similarity-2.png

Functional Interface

torchmetrics.functional.image.multiscale_structural_similarity_index_measure(preds, target, gaussian_kernel=True, sigma=1.5, kernel_size=11, reduction='elementwise_mean', data_range=None, k1=0.01, k2=0.03, betas=(0.0448, 0.2856, 0.3001, 0.2363, 0.1333), normalize='relu')[source]

Compute MultiScaleSSIM, Multi-scale Structural Similarity Index Measure.

This metric is a generalization of Structural Similarity Index Measure by incorporating image details at different resolution scores.

Parameters:
  • preds (Tensor) – Predictions from model of shape [N, C, H, W]

  • target (Tensor) – Ground truth values of shape [N, C, H, W]

  • gaussian_kernel (bool) – If true, a gaussian kernel is used, if false a uniform kernel is used

  • sigma (Union[float, Sequence[float]]) – Standard deviation of the gaussian kernel

  • kernel_size (Union[int, Sequence[int]]) – size of the gaussian kernel

  • reduction (Literal['elementwise_mean', 'sum', 'none', None]) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean

    • 'sum': takes the sum

    • 'none' or None: no reduction will be applied

  • data_range (Union[float, tuple[float, float], None]) – the range of the data. If None, it is determined from the data (max - min). If a tuple is provided then the range is calculated as the difference and input is clamped between the values.

  • k1 (float) – Parameter of structural similarity index measure.

  • k2 (float) – Parameter of structural similarity index measure.

  • betas (tuple[float, ...]) – Exponent parameters for individual similarities and contrastive sensitivities returned by different image resolutions.

  • normalize (Optional[Literal['relu', 'simple']]) – When MultiScaleSSIM loss is used for training, it is desirable to use normalizes to improve the training stability. This normalize argument is out of scope of the original implementation [1], and it is adapted from https://github.com/jorge-pessoa/pytorch-msssim instead.

Return type:

Tensor

Returns:

Tensor with Multi-Scale SSIM score

Raises:
  • TypeError – If preds and target don’t have the same data type.

  • ValueError – If preds and target don’t have BxCxHxW shape.

  • ValueError – If the length of kernel_size or sigma is not 2.

  • ValueError – If one of the elements of kernel_size is not an odd positive number.

  • ValueError – If one of the elements of sigma is not a positive number.

Example

>>>
>>> from torch import rand
>>> from torchmetrics.functional.image import multiscale_structural_similarity_index_measure
>>> preds = rand([3, 3, 256, 256])
>>> target = preds * 0.75
>>> multiscale_structural_similarity_index_measure(preds, target, data_range=1.0)
tensor(0.9628)

References

[1] Multi-Scale Structural Similarity For Image Quality Assessment by Zhou Wang, Eero P. Simoncelli and Alan C. Bovik MultiScaleSSIM

You are viewing an outdated version of TorchMetrics Docs

Click here to view the latest version→