Pearson’s Contingency Coefficient
Module Interface
- class torchmetrics.nominal.PearsonsContingencyCoefficient(num_classes, nan_strategy='replace', nan_replace_value=0.0, **kwargs)[source]
Compute Pearson’s Contingency Coefficient statistic.
This metric measures the association between two categorical (nominal) data series.
where
where
denotes the number of times the values are observed with represent frequencies of values inpreds
andtarget
, respectively. Pearson’s Contingency Coefficient is a symmetric coefficient, i.e. , so order of input arguments does not matter. The output values lies in [0, 1] with 1 meaning the perfect association.As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): Either 1D or 2D tensor of categorical (nominal) data from the first data series with shape(batch_size,)
or(batch_size, num_classes)
, respectively.target
(Tensor
): Either 1D or 2D tensor of categorical (nominal) data from the second data series with shape(batch_size,)
or(batch_size, num_classes)
, respectively.
As output of
forward
andcompute
the metric returns the following output:pearsons_cc
(Tensor
): Scalar tensor containing the Pearsons Contingency Coefficient statistic.
- Parameters:
num_classes (
int
) – Integer specifying the number of classesnan_strategy (
Literal
['replace'
,'drop'
]) – Indication of whether to replace or dropNaN
valuesnan_replace_value (
Optional
[float
]) – Value to replaceNaN``s when ``nan_strategy = 'replace'
kwargs (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Raises:
ValueError – If nan_strategy is not one of ‘replace’ and ‘drop’
ValueError – If nan_strategy is equal to ‘replace’ and nan_replace_value is not an int or float
Example:
>>> from torch import randint, randn >>> from torchmetrics.nominal import PearsonsContingencyCoefficient >>> preds = randint(0, 4, (100,)) >>> target = (preds + randn(100)).round().clamp(0, 4) >>> pearsons_contingency_coefficient = PearsonsContingencyCoefficient(num_classes=5) >>> pearsons_contingency_coefficient(preds, target) tensor(0.6948)
- plot(val=None, ax=None)[source]
Plot a single or multiple values from the metric.
- Parameters:
val (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> import torch >>> from torchmetrics.nominal import PearsonsContingencyCoefficient >>> metric = PearsonsContingencyCoefficient(num_classes=5) >>> metric.update(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,))) >>> fig_, ax_ = metric.plot()
>>> # Example plotting multiple values >>> import torch >>> from torchmetrics.nominal import PearsonsContingencyCoefficient >>> metric = PearsonsContingencyCoefficient(num_classes=5) >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,)))) >>> fig_, ax_ = metric.plot(values)
Functional Interface
- torchmetrics.functional.nominal.pearsons_contingency_coefficient(preds, target, nan_strategy='replace', nan_replace_value=0.0)[source]
Compute Pearson’s Contingency Coefficient for measuring the association between two categorical data series.
where
where
denotes the number of times the values are observed with represent frequencies of values inpreds
andtarget
, respectively.Pearson’s Contingency Coefficient is a symmetric coefficient, i.e.
.The output values lies in [0, 1] with 1 meaning the perfect association.
- Parameters:
preds (
Tensor
) –1D or 2D tensor of categorical (nominal) data:
1D shape: (batch_size,)
2D shape: (batch_size, num_classes)
target (
Tensor
) –1D or 2D tensor of categorical (nominal) data:
1D shape: (batch_size,)
2D shape: (batch_size, num_classes)
nan_strategy (
Literal
['replace'
,'drop'
]) – Indication of whether to replace or dropNaN
valuesnan_replace_value (
Optional
[float
]) – Value to replaceNaN``s when ``nan_strategy = 'replace'
- Return type:
- Returns:
Pearson’s Contingency Coefficient
Example
>>> from torch import randint, round >>> from torchmetrics.functional.nominal import pearsons_contingency_coefficient >>> preds = randint(0, 4, (100,)) >>> target = round(preds + torch.randn(100)).clamp(0, 4) >>> pearsons_contingency_coefficient(preds, target) tensor(0.6948)
pearsons_contingency_coefficient_matrix
- torchmetrics.functional.nominal.pearsons_contingency_coefficient_matrix(matrix, nan_strategy='replace', nan_replace_value=0.0)[source]
Compute Pearson’s Contingency Coefficient statistic between a set of multiple variables.
This can serve as a convenient tool to compute Pearson’s Contingency Coefficient for analyses of correlation between categorical variables in your dataset.
- Parameters:
matrix (
Tensor
) –A tensor of categorical (nominal) data, where:
rows represent a number of data points
columns represent a number of categorical (nominal) features
nan_strategy (
Literal
['replace'
,'drop'
]) – Indication of whether to replace or dropNaN
valuesnan_replace_value (
Optional
[float
]) – Value to replaceNaN``s when ``nan_strategy = 'replace'
- Return type:
- Returns:
Pearson’s Contingency Coefficient statistic for a dataset of categorical variables
Example
>>> from torch import randint >>> from torchmetrics.functional.nominal import pearsons_contingency_coefficient_matrix >>> matrix = randint(0, 4, (200, 5)) >>> pearsons_contingency_coefficient_matrix(matrix) tensor([[1.0000, 0.2326, 0.1959, 0.2262, 0.2989], [0.2326, 1.0000, 0.1386, 0.1895, 0.1329], [0.1959, 0.1386, 1.0000, 0.1840, 0.2335], [0.2262, 0.1895, 0.1840, 1.0000, 0.2737], [0.2989, 0.1329, 0.2335, 0.2737, 1.0000]])