Weighted MAPE¶
Module Interface¶
- class torchmetrics.WeightedMeanAbsolutePercentageError(**kwargs)[source]¶
Compute weighted mean absolute percentage error (WMAPE).
The output of WMAPE metric is a non-negative floating point, where the optimal value is 0. It is computes as:
\[\text{WMAPE} = \frac{\sum_{t=1}^n | y_t - \hat{y}_t | }{\sum_{t=1}^n |y_t| }\]Where \(y\) is a tensor of target values, and \(\hat{y}\) is a tensor of predictions.
As input to
forward
andupdate
the metric accepts the following input:As output of
forward
andcompute
the metric returns the following output:wmape
(Tensor
): A tensor with non-negative floating point wmape value between 0 and 1
- Parameters:
kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> from torch import randn >>> preds = randn(20,) >>> target = randn(20,) >>> wmape = WeightedMeanAbsolutePercentageError() >>> wmape(preds, target) tensor(1.3967)
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> from torch import randn >>> # Example plotting a single value >>> from torchmetrics.regression import WeightedMeanAbsolutePercentageError >>> metric = WeightedMeanAbsolutePercentageError() >>> metric.update(randn(10,), randn(10,)) >>> fig_, ax_ = metric.plot()
>>> from torch import randn >>> # Example plotting multiple values >>> from torchmetrics.regression import WeightedMeanAbsolutePercentageError >>> metric = WeightedMeanAbsolutePercentageError() >>> values = [] >>> for _ in range(10): ... values.append(metric(randn(10,), randn(10,))) >>> fig, ax = metric.plot(values)
Functional Interface¶
- torchmetrics.functional.weighted_mean_absolute_percentage_error(preds, target)[source]¶
Compute weighted mean absolute percentage error (WMAPE).
The output of WMAPE metric is a non-negative floating point, where the optimal value is 0. It is computes as:
\[\text{WMAPE} = \frac{\sum_{t=1}^n | y_t - \hat{y}_t | }{\sum_{t=1}^n |y_t| }\]Where \(y\) is a tensor of target values, and \(\hat{y}\) is a tensor of predictions.
- Parameters:
- Return type:
- Returns:
Tensor with WMAPE.
Example
>>> from torch import randn >>> preds = randn(20,) >>> target = randn(20,) >>> weighted_mean_absolute_percentage_error(preds, target) tensor(1.3967)