Concordance Corr. Coef.
Module Interface
- class torchmetrics.ConcordanceCorrCoef(num_outputs=1, **kwargs)[source]
Compute concordance correlation coefficient that measures the agreement between two variables.
where
is the means for the two variables, are the corresponding variances and rho is the pearson correlation coefficient between the two variables.As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): either single output float tensor with shape(N,)
or multioutput float tensor of shape(N,d)
target
(Tensor
): either single output float tensor with shape(N,)
or multioutput float tensor of shape(N,d)
As output of
forward
andcompute
the metric returns the following output:concordance
(Tensor
): A scalar float tensor with the concordance coefficient(s) for non-multioutput input or a float tensor with shape(d,)
for multioutput input
- Parameters:
num_outputs (
int
) – Number of outputs in multioutput settingkwargs (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Example (single output regression):
>>> from torchmetrics.regression import ConcordanceCorrCoef >>> from torch import tensor >>> target = tensor([3, -0.5, 2, 7]) >>> preds = tensor([2.5, 0.0, 2, 8]) >>> concordance = ConcordanceCorrCoef() >>> concordance(preds, target) tensor(0.9777)
- Example (multi output regression):
>>> from torchmetrics.regression import ConcordanceCorrCoef >>> target = tensor([[3, -0.5], [2, 7]]) >>> preds = tensor([[2.5, 0.0], [2, 8]]) >>> concordance = ConcordanceCorrCoef(num_outputs=2) >>> concordance(preds, target) tensor([0.7273, 0.9887])
- plot(val=None, ax=None)[source]
Plot a single or multiple values from the metric.
- Parameters:
val (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> from torch import randn >>> # Example plotting a single value >>> from torchmetrics.regression import ConcordanceCorrCoef >>> metric = ConcordanceCorrCoef() >>> metric.update(randn(10,), randn(10,)) >>> fig_, ax_ = metric.plot()
>>> from torch import randn >>> # Example plotting multiple values >>> from torchmetrics.regression import ConcordanceCorrCoef >>> metric = ConcordanceCorrCoef() >>> values = [] >>> for _ in range(10): ... values.append(metric(randn(10,), randn(10,))) >>> fig, ax = metric.plot(values)
Functional Interface
- torchmetrics.functional.concordance_corrcoef(preds, target)[source]
Compute concordance correlation coefficient that measures the agreement between two variables.
where
is the means for the two variables, are the corresponding variances and rho is the pearson correlation coefficient between the two variables.- Parameters:
- Return type:
- Example (single output regression):
>>> from torchmetrics.functional.regression import concordance_corrcoef >>> target = torch.tensor([3, -0.5, 2, 7]) >>> preds = torch.tensor([2.5, 0.0, 2, 8]) >>> concordance_corrcoef(preds, target) tensor([0.9777])
- Example (multi output regression):
>>> from torchmetrics.functional.regression import concordance_corrcoef >>> target = torch.tensor([[3, -0.5], [2, 7]]) >>> preds = torch.tensor([[2.5, 0.0], [2, 8]]) >>> concordance_corrcoef(preds, target) tensor([0.7273, 0.9887])