Concordance Corr. Coef.

Module Interface

class torchmetrics.ConcordanceCorrCoef(num_outputs=1, **kwargs)[source]

Compute concordance correlation coefficient that measures the agreement between two variables.

ρc=2ρσxσyσx2+σy2+(μxμy)2

where μx,μy is the means for the two variables, σx2,σy2 are the corresponding variances and rho is the pearson correlation coefficient between the two variables.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): either single output float tensor with shape (N,) or multioutput float tensor of shape (N,d)

  • target (Tensor): either single output float tensor with shape (N,) or multioutput float tensor of shape (N,d)

As output of forward and compute the metric returns the following output:

  • concordance (Tensor): A scalar float tensor with the concordance coefficient(s) for non-multioutput input or a float tensor with shape (d,) for multioutput input

Parameters:
  • num_outputs (int) – Number of outputs in multioutput setting

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example (single output regression):
>>>
>>> from torchmetrics.regression import ConcordanceCorrCoef
>>> from torch import tensor
>>> target = tensor([3, -0.5, 2, 7])
>>> preds = tensor([2.5, 0.0, 2, 8])
>>> concordance = ConcordanceCorrCoef()
>>> concordance(preds, target)
tensor(0.9777)
Example (multi output regression):
>>>
>>> from torchmetrics.regression import ConcordanceCorrCoef
>>> target = tensor([[3, -0.5], [2, 7]])
>>> preds = tensor([[2.5, 0.0], [2, 8]])
>>> concordance = ConcordanceCorrCoef(num_outputs=2)
>>> concordance(preds, target)
tensor([0.7273, 0.9887])
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>>
>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import ConcordanceCorrCoef
>>> metric = ConcordanceCorrCoef()
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()
../_images/concordance_corr_coef-1.png
>>>
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import ConcordanceCorrCoef
>>> metric = ConcordanceCorrCoef()
>>> values = []
>>> for _ in range(10):
...     values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)
../_images/concordance_corr_coef-2.png

Functional Interface

torchmetrics.functional.concordance_corrcoef(preds, target)[source]

Compute concordance correlation coefficient that measures the agreement between two variables.

ρc=2ρσxσyσx2+σy2+(μxμy)2

where μx,μy is the means for the two variables, σx2,σy2 are the corresponding variances and rho is the pearson correlation coefficient between the two variables.

Parameters:
  • preds (Tensor) – estimated scores

  • target (Tensor) – ground truth scores

Return type:

Tensor

Example (single output regression):
>>>
>>> from torchmetrics.functional.regression import concordance_corrcoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> concordance_corrcoef(preds, target)
tensor([0.9777])
Example (multi output regression):
>>>
>>> from torchmetrics.functional.regression import concordance_corrcoef
>>> target = torch.tensor([[3, -0.5], [2, 7]])
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> concordance_corrcoef(preds, target)
tensor([0.7273, 0.9887])