Fowlkes-Mallows Index¶
Module Interface¶
- class torchmetrics.clustering.FowlkesMallowsIndex(**kwargs)[source]¶
Compute Fowlkes-Mallows Index.
\[FMI(U,V) = \frac{TP}{\sqrt{(TP + FP) * (TP + FN)}}\]Where \(TP\) is the number of true positives, \(FP\) is the number of false positives, and \(FN\) is the number of false negatives.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): single integer tensor with shape(N,)
with predicted cluster labelstarget
(Tensor
): single integer tensor with shape(N,)
with ground truth cluster labels
As output of
forward
andcompute
the metric returns the following output:fmi
(Tensor
): A tensor with the Fowlkes-Mallows index.
- Parameters:
kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Example::
>>> import torch >>> from torchmetrics.clustering import FowlkesMallowsIndex >>> preds = torch.tensor([2, 2, 0, 1, 0]) >>> target = torch.tensor([2, 2, 1, 1, 0]) >>> fmi = FowlkesMallowsIndex() >>> fmi(preds, target) tensor(0.5000)
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> import torch >>> from torchmetrics.clustering import FowlkesMallowsIndex >>> metric = FowlkesMallowsIndex() >>> metric.update(torch.randint(0, 4, (10,)), torch.randint(0, 4, (10,))) >>> fig_, ax_ = metric.plot(metric.compute())
>>> # Example plotting multiple values >>> import torch >>> from torchmetrics.clustering import FowlkesMallowsIndex >>> metric = FowlkesMallowsIndex() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.randint(0, 4, (10,)), torch.randint(0, 4, (10,)))) >>> fig_, ax_ = metric.plot(values)
Functional Interface¶
- torchmetrics.functional.clustering.fowlkes_mallows_index(preds, target)[source]¶
Compute Fowlkes-Mallows index between two clusterings.
- Parameters:
- Return type:
- Returns:
Scalar tensor with Fowlkes-Mallows index
Example
>>> import torch >>> from torchmetrics.functional.clustering import fowlkes_mallows_index >>> preds = torch.tensor([2, 2, 0, 1, 0]) >>> target = torch.tensor([2, 2, 1, 1, 0]) >>> fowlkes_mallows_index(preds, target) tensor(0.5000)