Root Mean Squared Error Using Sliding Window¶
Module Interface¶
- class torchmetrics.image.RootMeanSquaredErrorUsingSlidingWindow(window_size=8, **kwargs)[source]¶
Computes Root Mean Squared Error (RMSE) using sliding window.
As input to
forward
andupdate
the metric accepts the following inputpreds
(Tensor
): Predictions from model of shape(N,C,H,W)
target
(Tensor
): Ground truth values of shape(N,C,H,W)
As output of forward and compute the metric returns the following output
rmse_sw
(Tensor
): returns float scalar tensor with average RMSE-SW value over sample
- Parameters:
Example
>>> from torch import rand >>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow >>> preds = rand(4, 3, 16, 16) >>> target = rand(4, 3, 16, 16) >>> rmse_sw = RootMeanSquaredErrorUsingSlidingWindow() >>> rmse_sw(preds, target) tensor(0.4158)
- Raises:
ValueError – If
window_size
is not a positive integer.
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> import torch >>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow >>> metric = RootMeanSquaredErrorUsingSlidingWindow() >>> metric.update(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16)) >>> fig_, ax_ = metric.plot()
>>> # Example plotting multiple values >>> import torch >>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow >>> metric = RootMeanSquaredErrorUsingSlidingWindow() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16))) >>> fig_, ax_ = metric.plot(values)
Functional Interface¶
- torchmetrics.functional.image.root_mean_squared_error_using_sliding_window(preds, target, window_size=8, return_rmse_map=False)[source]¶
Compute Root Mean Squared Error (RMSE) using sliding window.
- Parameters:
- Return type:
- Returns:
RMSE using sliding window (Optionally) RMSE map
Example
>>> from torch import rand >>> from torchmetrics.functional.image import root_mean_squared_error_using_sliding_window >>> preds = rand(4, 3, 16, 16) >>> target = rand(4, 3, 16, 16) >>> root_mean_squared_error_using_sliding_window(preds, target) tensor(0.4158)
- Raises:
ValueError – If
window_size
is not a positive integer.