Mean Squared Error (MSE)¶
Module Interface¶
- class torchmetrics.MeanSquaredError(squared=True, num_outputs=1, **kwargs)[source]¶
Compute mean squared error (MSE).
\[\text{MSE} = \frac{1}{N}\sum_i^N(y_i - \hat{y_i})^2\]Where \(y\) is a tensor of target values, and \(\hat{y}\) is a tensor of predictions.
As input to
forward
andupdate
the metric accepts the following input:As output of
forward
andcompute
the metric returns the following output:mean_squared_error
(Tensor
): A tensor with the mean squared error
- Parameters:
- Example::
Single output mse computation:
>>> from torch import tensor >>> from torchmetrics.regression import MeanSquaredError >>> target = tensor([2.5, 5.0, 4.0, 8.0]) >>> preds = tensor([3.0, 5.0, 2.5, 7.0]) >>> mean_squared_error = MeanSquaredError() >>> mean_squared_error(preds, target) tensor(0.8750)
- Example::
Multioutput mse computation:
>>> from torch import tensor >>> from torchmetrics.regression import MeanSquaredError >>> target = tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) >>> preds = tensor([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]) >>> mean_squared_error = MeanSquaredError(num_outputs=3) >>> mean_squared_error(preds, target) tensor([1., 4., 9.])
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> from torch import randn >>> # Example plotting a single value >>> from torchmetrics.regression import MeanSquaredError >>> metric = MeanSquaredError() >>> metric.update(randn(10,), randn(10,)) >>> fig_, ax_ = metric.plot()
>>> from torch import randn >>> # Example plotting multiple values >>> from torchmetrics.regression import MeanSquaredError >>> metric = MeanSquaredError() >>> values = [] >>> for _ in range(10): ... values.append(metric(randn(10,), randn(10,))) >>> fig, ax = metric.plot(values)
Functional Interface¶
- torchmetrics.functional.mean_squared_error(preds, target, squared=True, num_outputs=1)[source]¶
Compute mean squared error.
- Parameters:
- Return type:
- Returns:
Tensor with MSE
Example
>>> from torchmetrics.functional.regression import mean_squared_error >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> mean_squared_error(x, y) tensor(0.2500)