Structural Similarity Index Measure (SSIM)¶
Module Interface¶
- class torchmetrics.image.StructuralSimilarityIndexMeasure(gaussian_kernel=True, sigma=1.5, kernel_size=11, reduction='elementwise_mean', data_range=None, k1=0.01, k2=0.03, return_full_image=False, return_contrast_sensitivity=False, **kwargs)[source]¶
Compute Structural Similarity Index Measure (SSIM).
As input to
forward
andupdate
the metric accepts the following inputAs output of forward and compute the metric returns the following output
ssim
(Tensor
): ifreduction!='none'
returns float scalar tensor with average SSIM value over sample else returns tensor of shape(N,)
with SSIM values per sample
- Parameters:
preds¶ – estimated image
target¶ – ground truth image
gaussian_kernel¶ (
bool
) – IfTrue
(default), a gaussian kernel is used, ifFalse
a uniform kernel is usedsigma¶ (
Union
[float
,Sequence
[float
]]) – Standard deviation of the gaussian kernel, anisotropic kernels are possible. Ignored if a uniform kernel is usedkernel_size¶ (
Union
[int
,Sequence
[int
]]) – the size of the uniform kernel, anisotropic kernels are possible. Ignored if a Gaussian kernel is usedreduction¶ (
Literal
['elementwise_mean'
,'sum'
,'none'
,None
]) –a method to reduce metric score over individual batch scores
'elementwise_mean'
: takes the mean'sum'
: takes the sum'none'
orNone
: no reduction will be applied
data_range¶ (
Union
[float
,Tuple
[float
,float
],None
]) – the range of the data. If None, it is determined from the data (max - min). If a tuple is provided then the range is calculated as the difference and input is clamped between the values.return_full_image¶ (
bool
) – If true, the fullssim
image is returned as a second argument. Mutually exclusive withreturn_contrast_sensitivity
return_contrast_sensitivity¶ (
bool
) – If true, the constant term is returned as a second argument. The luminance term can be obtained with luminance=ssim/contrast Mutually exclusive withreturn_full_image
kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> import torch >>> from torchmetrics.image import StructuralSimilarityIndexMeasure >>> preds = torch.rand([3, 3, 256, 256]) >>> target = preds * 0.75 >>> ssim = StructuralSimilarityIndexMeasure(data_range=1.0) >>> ssim(preds, target) tensor(0.9219)
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> import torch >>> from torchmetrics.image import StructuralSimilarityIndexMeasure >>> preds = torch.rand([3, 3, 256, 256]) >>> target = preds * 0.75 >>> metric = StructuralSimilarityIndexMeasure(data_range=1.0) >>> metric.update(preds, target) >>> fig_, ax_ = metric.plot()
>>> # Example plotting multiple values >>> import torch >>> from torchmetrics.image import StructuralSimilarityIndexMeasure >>> preds = torch.rand([3, 3, 256, 256]) >>> target = preds * 0.75 >>> metric = StructuralSimilarityIndexMeasure(data_range=1.0) >>> values = [ ] >>> for _ in range(10): ... values.append(metric(preds, target)) >>> fig_, ax_ = metric.plot(values)
Functional Interface¶
- torchmetrics.functional.image.structural_similarity_index_measure(preds, target, gaussian_kernel=True, sigma=1.5, kernel_size=11, reduction='elementwise_mean', data_range=None, k1=0.01, k2=0.03, return_full_image=False, return_contrast_sensitivity=False)[source]¶
Compute Structural Similarity Index Measure.
- Parameters:
gaussian_kernel¶ (
bool
) – If true (default), a gaussian kernel is used, if false a uniform kernel is usedsigma¶ (
Union
[float
,Sequence
[float
]]) – Standard deviation of the gaussian kernel, anisotropic kernels are possible. Ignored if a uniform kernel is usedkernel_size¶ (
Union
[int
,Sequence
[int
]]) – the size of the uniform kernel, anisotropic kernels are possible. Ignored if a Gaussian kernel is usedreduction¶ (
Literal
['elementwise_mean'
,'sum'
,'none'
,None
]) –a method to reduce metric score over labels.
'elementwise_mean'
: takes the mean'sum'
: takes the sum'none'
orNone
: no reduction will be applied
data_range¶ (
Union
[float
,Tuple
[float
,float
],None
]) – the range of the data. If None, it is determined from the data (max - min). If a tuple is provided then the range is calculated as the difference and input is clamped between the values.return_full_image¶ (
bool
) – If true, the fullssim
image is returned as a second argument. Mutually exclusive withreturn_contrast_sensitivity
return_contrast_sensitivity¶ (
bool
) – If true, the constant term is returned as a second argument. The luminance term can be obtained with luminance=ssim/contrast Mutually exclusive withreturn_full_image
- Return type:
- Returns:
Tensor with SSIM score
- Raises:
TypeError – If
preds
andtarget
don’t have the same data type.ValueError – If
preds
andtarget
don’t haveBxCxHxW shape
.ValueError – If the length of
kernel_size
orsigma
is not2
.ValueError – If one of the elements of
kernel_size
is not anodd positive number
.ValueError – If one of the elements of
sigma
is not apositive number
.
Example
>>> from torchmetrics.functional.image import structural_similarity_index_measure >>> preds = torch.rand([3, 3, 256, 256]) >>> target = preds * 0.75 >>> structural_similarity_index_measure(preds, target) tensor(0.9219)