V-Measure Score¶
Module Interface¶
- class torchmetrics.clustering.VMeasureScore(beta=1.0, **kwargs)[source]¶
Compute V-Measure Score.
The V-measure is the harmonic mean between homogeneity and completeness:
- ..math::
v = frac{(1 + beta) * homogeneity * completeness}{beta * homogeneity + completeness}
where \(\beta\) is a weight parameter that defines the weight of homogeneity in the harmonic mean, with the default value \(\beta=1\). The V-measure is symmetric, which means that swapping
preds
andtarget
does not change the score.This clustering metric is an extrinsic measure, because it requires ground truth clustering labels, which may not be available in practice since clustering in generally is used for unsupervised learning.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): single integer tensor with shape(N,)
with predicted cluster labelstarget
(Tensor
): single integer tensor with shape(N,)
with ground truth cluster labels
As output of
forward
andcompute
the metric returns the following output:rand_score
(Tensor
): A tensor with the Rand Score
- Parameters:
beta¶ (
float
) – Weight parameter that defines the weight of homogeneity in the harmonic meankwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Example::
>>> import torch >>> from torchmetrics.clustering import VMeasureScore >>> preds = torch.tensor([2, 1, 0, 1, 0]) >>> target = torch.tensor([0, 2, 1, 1, 0]) >>> metric = VMeasureScore(beta=2.0) >>> metric(preds, target) tensor(0.4744)
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> import torch >>> from torchmetrics.clustering import VMeasureScore >>> metric = VMeasureScore() >>> metric.update(torch.randint(0, 4, (10,)), torch.randint(0, 4, (10,))) >>> fig_, ax_ = metric.plot(metric.compute())
>>> # Example plotting multiple values >>> import torch >>> from torchmetrics.clustering import VMeasureScore >>> metric = VMeasureScore() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.randint(0, 4, (10,)), torch.randint(0, 4, (10,)))) >>> fig_, ax_ = metric.plot(values)
Functional Interface¶
- torchmetrics.functional.clustering.v_measure_score(preds, target, beta=1.0)[source]¶
Compute the V-measure score between two clusterings.
- Parameters:
- Return type:
- Returns:
scalar tensor with the rand score
Example
>>> from torchmetrics.functional.clustering import v_measure_score >>> import torch >>> v_measure_score(torch.tensor([0, 0, 1, 1]), torch.tensor([1, 1, 0, 0])) tensor(1.) >>> v_measure_score(torch.tensor([0, 0, 1, 2]), torch.tensor([0, 0, 1, 1])) tensor(0.8000)