Matthews Correlation Coefficient

Module Interface

class torchmetrics.MatthewsCorrCoef(**kwargs)[source]

Calculate Matthews correlation coefficient .

This metric measures the general correlation or quality of a classification.

This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the task argument to either 'binary', 'multiclass' or multilabel. See the documentation of BinaryMatthewsCorrCoef, MulticlassMatthewsCorrCoef and MultilabelMatthewsCorrCoef for the specific details of each argument influence and examples.

Legacy Example:
>>> from torch import tensor
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0, 1, 0, 0])
>>> matthews_corrcoef = MatthewsCorrCoef(task='binary')
>>> matthews_corrcoef(preds, target)
tensor(0.5774)
static __new__(cls, task, threshold=0.5, num_classes=None, num_labels=None, ignore_index=None, validate_args=True, **kwargs)[source]

Initialize task metric.

Return type:

Metric

BinaryMatthewsCorrCoef

class torchmetrics.classification.BinaryMatthewsCorrCoef(threshold=0.5, ignore_index=None, validate_args=True, **kwargs)[source]

Calculate Matthews correlation coefficient for binary tasks.

This metric measures the general correlation or quality of a classification.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): A int tensor or float tensor of shape (N, ...). If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in threshold.

  • target (Tensor): An int tensor of shape (N, ...)

Tip

Additional dimension ... will be flattened into the batch dimension.

As output to forward and compute the metric returns the following output:

  • bmcc (Tensor): A tensor containing the Binary Matthews Correlation Coefficient.

Parameters:
  • threshold (float) – Threshold for transforming probability to binary (0,1) predictions

  • ignore_index (Optional[int]) – Specifies a target value that is ignored and does not contribute to the metric calculation

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import BinaryMatthewsCorrCoef
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0, 1, 0, 0])
>>> metric = BinaryMatthewsCorrCoef()
>>> metric(preds, target)
tensor(0.5774)
Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryMatthewsCorrCoef
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0.35, 0.85, 0.48, 0.01])
>>> metric = BinaryMatthewsCorrCoef()
>>> metric(preds, target)
tensor(0.5774)
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure object and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import BinaryMatthewsCorrCoef
>>> metric = BinaryMatthewsCorrCoef()
>>> metric.update(rand(10), randint(2,(10,)))
>>> fig_, ax_ = metric.plot()
../_images/matthews_corr_coef-1.png
>>> from torch import rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import BinaryMatthewsCorrCoef
>>> metric = BinaryMatthewsCorrCoef()
>>> values = [ ]
>>> for _ in range(10):
...     values.append(metric(rand(10), randint(2,(10,))))
>>> fig_, ax_ = metric.plot(values)
../_images/matthews_corr_coef-2.png

MulticlassMatthewsCorrCoef

class torchmetrics.classification.MulticlassMatthewsCorrCoef(num_classes, ignore_index=None, validate_args=True, **kwargs)[source]

Calculate Matthews correlation coefficient for multiclass tasks.

This metric measures the general correlation or quality of a classification.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): A int tensor of shape (N, ...) or float tensor of shape (N, C, ..). If preds is a floating point we apply torch.argmax along the C dimension to automatically convert probabilities/logits into an int tensor.

  • target (Tensor): An int tensor of shape (N, ...)

Tip

Additional dimension ... will be flattened into the batch dimension.

As output to forward and compute the metric returns the following output:

  • mcmcc (Tensor): A tensor containing the Multi-class Matthews Correlation Coefficient.

Parameters:
  • num_classes (int) – Integer specifying the number of classes

  • ignore_index (Optional[int]) – Specifies a target value that is ignored and does not contribute to the metric calculation

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example (pred is integer tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MulticlassMatthewsCorrCoef
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([2, 1, 0, 1])
>>> metric = MulticlassMatthewsCorrCoef(num_classes=3)
>>> metric(preds, target)
tensor(0.7000)
Example (pred is float tensor):
>>> from torchmetrics.classification import MulticlassMatthewsCorrCoef
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([[0.16, 0.26, 0.58],
...                 [0.22, 0.61, 0.17],
...                 [0.71, 0.09, 0.20],
...                 [0.05, 0.82, 0.13]])
>>> metric = MulticlassMatthewsCorrCoef(num_classes=3)
>>> metric(preds, target)
tensor(0.7000)
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure object and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import randint
>>> # Example plotting a single value per class
>>> from torchmetrics.classification import MulticlassMatthewsCorrCoef
>>> metric = MulticlassMatthewsCorrCoef(num_classes=3)
>>> metric.update(randint(3, (20,)), randint(3, (20,)))
>>> fig_, ax_ = metric.plot()
../_images/matthews_corr_coef-3.png
>>> from torch import randint
>>> # Example plotting a multiple values per class
>>> from torchmetrics.classification import MulticlassMatthewsCorrCoef
>>> metric = MulticlassMatthewsCorrCoef(num_classes=3)
>>> values = []
>>> for _ in range(20):
...     values.append(metric(randint(3, (20,)), randint(3, (20,))))
>>> fig_, ax_ = metric.plot(values)
../_images/matthews_corr_coef-4.png

MultilabelMatthewsCorrCoef

class torchmetrics.classification.MultilabelMatthewsCorrCoef(num_labels, threshold=0.5, ignore_index=None, validate_args=True, **kwargs)[source]

Calculate Matthews correlation coefficient for multilabel tasks.

This metric measures the general correlation or quality of a classification.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): An int or float tensor of shape (N, C, ...). If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in threshold.

  • target (Tensor): An int tensor of shape (N, C, ...)

Tip

Additional dimension ... will be flattened into the batch dimension.

As output to forward and compute the metric returns the following output:

  • mlmcc (Tensor): A tensor containing the Multi-label Matthews Correlation Coefficient.

Parameters:
  • num_labels (int) – Integer specifying the number of labels

  • threshold (float) – Threshold for transforming probability to binary (0,1) predictions

  • ignore_index (Optional[int]) – Specifies a target value that is ignored and does not contribute to the metric calculation

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MultilabelMatthewsCorrCoef
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
>>> metric = MultilabelMatthewsCorrCoef(num_labels=3)
>>> metric(preds, target)
tensor(0.3333)
Example (preds is float tensor):
>>> from torchmetrics.classification import MultilabelMatthewsCorrCoef
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
>>> metric = MultilabelMatthewsCorrCoef(num_labels=3)
>>> metric(preds, target)
tensor(0.3333)
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure object and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import MultilabelMatthewsCorrCoef
>>> metric = MultilabelMatthewsCorrCoef(num_labels=3)
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3)))
>>> fig_, ax_ = metric.plot()
../_images/matthews_corr_coef-5.png
>>> from torch import rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import MultilabelMatthewsCorrCoef
>>> metric = MultilabelMatthewsCorrCoef(num_labels=3)
>>> values = [ ]
>>> for _ in range(10):
...     values.append(metric(randint(2, (20, 3)), randint(2, (20, 3))))
>>> fig_, ax_ = metric.plot(values)
../_images/matthews_corr_coef-6.png

Functional Interface

matthews_corrcoef

torchmetrics.functional.matthews_corrcoef(preds, target, task, threshold=0.5, num_classes=None, num_labels=None, ignore_index=None, validate_args=True)[source]

Calculate Matthews correlation coefficient .

This metric measures the general correlation or quality of a classification.

This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the task argument to either 'binary', 'multiclass' or multilabel. See the documentation of binary_matthews_corrcoef(), multiclass_matthews_corrcoef() and multilabel_matthews_corrcoef() for the specific details of each argument influence and examples.

Return type:

Tensor

Legacy Example:
>>> from torch import tensor
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0, 1, 0, 0])
>>> matthews_corrcoef(preds, target, task="multiclass", num_classes=2)
tensor(0.5774)

binary_matthews_corrcoef

torchmetrics.functional.classification.binary_matthews_corrcoef(preds, target, threshold=0.5, ignore_index=None, validate_args=True)[source]

Calculate Matthews correlation coefficient for binary tasks.

This metric measures the general correlation or quality of a classification.

Accepts the following input tensors:

  • preds (int or float tensor): (N, ...). If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in threshold.

  • target (int tensor): (N, ...)

Additional dimension ... will be flattened into the batch dimension.

Parameters:
  • preds (Tensor) – Tensor with predictions

  • target (Tensor) – Tensor with true labels

  • threshold (float) – Threshold for transforming probability to binary (0,1) predictions

  • ignore_index (Optional[int]) – Specifies a target value that is ignored and does not contribute to the metric calculation

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

  • kwargs – Additional keyword arguments, see Advanced metric settings for more info.

Return type:

Tensor

Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.functional.classification import binary_matthews_corrcoef
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0, 1, 0, 0])
>>> binary_matthews_corrcoef(preds, target)
tensor(0.5774)
Example (preds is float tensor):
>>> from torchmetrics.functional.classification import binary_matthews_corrcoef
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0.35, 0.85, 0.48, 0.01])
>>> binary_matthews_corrcoef(preds, target)
tensor(0.5774)

multiclass_matthews_corrcoef

torchmetrics.functional.classification.multiclass_matthews_corrcoef(preds, target, num_classes, ignore_index=None, validate_args=True)[source]

Calculate Matthews correlation coefficient for multiclass tasks.

This metric measures the general correlation or quality of a classification.

Accepts the following input tensors:

  • preds: (N, ...) (int tensor) or (N, C, ..) (float tensor). If preds is a floating point we apply torch.argmax along the C dimension to automatically convert probabilities/logits into an int tensor.

  • target (int tensor): (N, ...)

Additional dimension ... will be flattened into the batch dimension.

Parameters:
  • preds (Tensor) – Tensor with predictions

  • target (Tensor) – Tensor with true labels

  • num_classes (int) – Integer specifying the number of classes

  • ignore_index (Optional[int]) – Specifies a target value that is ignored and does not contribute to the metric calculation

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

  • kwargs – Additional keyword arguments, see Advanced metric settings for more info.

Return type:

Tensor

Example (pred is integer tensor):
>>> from torch import tensor
>>> from torchmetrics.functional.classification import multiclass_matthews_corrcoef
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([2, 1, 0, 1])
>>> multiclass_matthews_corrcoef(preds, target, num_classes=3)
tensor(0.7000)
Example (pred is float tensor):
>>> from torchmetrics.functional.classification import multiclass_matthews_corrcoef
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([[0.16, 0.26, 0.58],
...                 [0.22, 0.61, 0.17],
...                 [0.71, 0.09, 0.20],
...                 [0.05, 0.82, 0.13]])
>>> multiclass_matthews_corrcoef(preds, target, num_classes=3)
tensor(0.7000)

multilabel_matthews_corrcoef

torchmetrics.functional.classification.multilabel_matthews_corrcoef(preds, target, num_labels, threshold=0.5, ignore_index=None, validate_args=True)[source]

Calculate Matthews correlation coefficient for multilabel tasks.

This metric measures the general correlation or quality of a classification.

Accepts the following input tensors:

  • preds (int or float tensor): (N, C, ...). If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in threshold.

  • target (int tensor): (N, C, ...)

Additional dimension ... will be flattened into the batch dimension.

Parameters:
  • preds (Tensor) – Tensor with predictions

  • target (Tensor) – Tensor with true labels

  • num_labels (int) – Integer specifying the number of labels

  • threshold (float) – Threshold for transforming probability to binary (0,1) predictions

  • ignore_index (Optional[int]) – Specifies a target value that is ignored and does not contribute to the metric calculation

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

Return type:

Tensor

Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.functional.classification import multilabel_matthews_corrcoef
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
>>> multilabel_matthews_corrcoef(preds, target, num_labels=3)
tensor(0.3333)
Example (preds is float tensor):
>>> from torchmetrics.functional.classification import multilabel_matthews_corrcoef
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
>>> multilabel_matthews_corrcoef(preds, target, num_labels=3)
tensor(0.3333)