F-1 Score¶
Module Interface¶
- class torchmetrics.F1Score(**kwargs)[source]¶
Compute F-1 score.
\[F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}\]The metric is only proper defined when \(\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0\) where \(\text{TP}\), \(\text{FP}\) and \(\text{FN}\) represent the number of true positives, false positives and false negatives respectively. If this case is encountered for any class/label, the metric for that class/label will be set to zero_division (0 or 1, default is 0) and the overall metric may therefore be affected in turn.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'binary'
,'multiclass'
ormultilabel
. See the documentation ofBinaryF1Score
,MulticlassF1Score
andMultilabelF1Score
for the specific details of each argument influence and examples.- Legacy Example:
>>> from torch import tensor >>> target = tensor([0, 1, 2, 0, 1, 2]) >>> preds = tensor([0, 2, 1, 0, 0, 1]) >>> f1 = F1Score(task="multiclass", num_classes=3) >>> f1(preds, target) tensor(0.3333)
BinaryF1Score¶
- class torchmetrics.classification.BinaryF1Score(threshold=0.5, multidim_average='global', ignore_index=None, validate_args=True, zero_division=0, **kwargs)[source]¶
Compute F-1 score for binary tasks.
\[F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}\]The metric is only proper defined when \(\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0\) where \(\text{TP}\), \(\text{FP}\) and \(\text{FN}\) represent the number of true positives, false positives and false negatives respectively. If this case is encountered a score of zero_division (0 or 1, default is 0) is returned.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): An int or float tensor of shape(N, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value inthreshold
.target
(Tensor
): An int tensor of shape(N, ...)
As output to
forward
andcompute
the metric returns the following output:bf1s
(Tensor
): A tensor whose returned shape depends on themultidim_average
argument:If
multidim_average
is set toglobal
, the metric returns a scalar value.If
multidim_average
is set tosamplewise
, the metric returns(N,)
vector consisting of a scalar value per sample.
If
multidim_average
is set tosamplewise
we expect at least one additional dimension...
to be present, which the reduction will then be applied over instead of the sample dimensionN
.- Parameters:
threshold¶ (
float
) – Threshold for transforming probability to binary {0,1} predictionsmultidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.zero_division¶ (
float
) – Should be 0 or 1. The value returned when \(\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0\).
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.classification import BinaryF1Score >>> target = tensor([0, 1, 0, 1, 0, 1]) >>> preds = tensor([0, 0, 1, 1, 0, 1]) >>> metric = BinaryF1Score() >>> metric(preds, target) tensor(0.6667)
- Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryF1Score >>> target = tensor([0, 1, 0, 1, 0, 1]) >>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) >>> metric = BinaryF1Score() >>> metric(preds, target) tensor(0.6667)
- Example (multidim tensors):
>>> from torchmetrics.classification import BinaryF1Score >>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) >>> metric = BinaryF1Score(multidim_average='samplewise') >>> metric(preds, target) tensor([0.5000, 0.0000])
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure object and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> from torch import rand, randint >>> # Example plotting a single value >>> from torchmetrics.classification import BinaryF1Score >>> metric = BinaryF1Score() >>> metric.update(rand(10), randint(2,(10,))) >>> fig_, ax_ = metric.plot()
>>> from torch import rand, randint >>> # Example plotting multiple values >>> from torchmetrics.classification import BinaryF1Score >>> metric = BinaryF1Score() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(rand(10), randint(2,(10,)))) >>> fig_, ax_ = metric.plot(values)
MulticlassF1Score¶
- class torchmetrics.classification.MulticlassF1Score(num_classes, top_k=1, average='macro', multidim_average='global', ignore_index=None, validate_args=True, zero_division=0, **kwargs)[source]¶
Compute F-1 score for multiclass tasks.
\[F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}\]The metric is only proper defined when \(\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0\) where \(\text{TP}\), \(\text{FP}\) and \(\text{FN}\) represent the number of true positives, false positives and false negatives respectively. If this case is encountered for any class, the metric for that class will be set to zero_division (0 or 1, default is 0) and the overall metric may therefore be affected in turn.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): An int tensor of shape(N, ...)
or float tensor of shape(N, C, ..)
. If preds is a floating point we applytorch.argmax
along theC
dimension to automatically convert probabilities/logits into an int tensor.target
(Tensor
): An int tensor of shape(N, ...)
As output to
forward
andcompute
the metric returns the following output:mcf1s
(Tensor
): A tensor whose returned shape depends on theaverage
andmultidim_average
arguments:If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the output will be a scalar tensorIf
average=None/'none'
, the shape will be(C,)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N,)
If
average=None/'none'
, the shape will be(N, C)
If
multidim_average
is set tosamplewise
we expect at least one additional dimension...
to be present, which the reduction will then be applied over instead of the sample dimensionN
.- Parameters:
preds¶ – Tensor with predictions
target¶ – Tensor with true labels
num_classes¶ (
int
) – Integer specifying the number of classesaverage¶ (
Optional
[Literal
['micro'
,'macro'
,'weighted'
,'none'
]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: calculates statistics for each label and computes weighted average using their support"none"
orNone
: calculates statistic for each label and applies no reduction
top_k¶ (
int
) – Number of highest probability or logit score predictions considered to find the correct label. Only works whenpreds
contain probabilities/logits.multidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.zero_division¶ (
float
) – Should be 0 or 1. The value returned when \(\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0\).
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.classification import MulticlassF1Score >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([2, 1, 0, 1]) >>> metric = MulticlassF1Score(num_classes=3) >>> metric(preds, target) tensor(0.7778) >>> mcf1s = MulticlassF1Score(num_classes=3, average=None) >>> mcf1s(preds, target) tensor([0.6667, 0.6667, 1.0000])
- Example (preds is float tensor):
>>> from torchmetrics.classification import MulticlassF1Score >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([[0.16, 0.26, 0.58], ... [0.22, 0.61, 0.17], ... [0.71, 0.09, 0.20], ... [0.05, 0.82, 0.13]]) >>> metric = MulticlassF1Score(num_classes=3) >>> metric(preds, target) tensor(0.7778) >>> mcf1s = MulticlassF1Score(num_classes=3, average=None) >>> mcf1s(preds, target) tensor([0.6667, 0.6667, 1.0000])
- Example (multidim tensors):
>>> from torchmetrics.classification import MulticlassF1Score >>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) >>> metric = MulticlassF1Score(num_classes=3, multidim_average='samplewise') >>> metric(preds, target) tensor([0.4333, 0.2667]) >>> mcf1s = MulticlassF1Score(num_classes=3, multidim_average='samplewise', average=None) >>> mcf1s(preds, target) tensor([[0.8000, 0.0000, 0.5000], [0.0000, 0.4000, 0.4000]])
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure object and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> from torch import randint >>> # Example plotting a single value per class >>> from torchmetrics.classification import MulticlassF1Score >>> metric = MulticlassF1Score(num_classes=3, average=None) >>> metric.update(randint(3, (20,)), randint(3, (20,))) >>> fig_, ax_ = metric.plot()
>>> from torch import randint >>> # Example plotting a multiple values per class >>> from torchmetrics.classification import MulticlassF1Score >>> metric = MulticlassF1Score(num_classes=3, average=None) >>> values = [] >>> for _ in range(20): ... values.append(metric(randint(3, (20,)), randint(3, (20,)))) >>> fig_, ax_ = metric.plot(values)
MultilabelF1Score¶
- class torchmetrics.classification.MultilabelF1Score(num_labels, threshold=0.5, average='macro', multidim_average='global', ignore_index=None, validate_args=True, zero_division=0, **kwargs)[source]¶
Compute F-1 score for multilabel tasks.
\[F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}\]The metric is only proper defined when \(\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0\) where \(\text{TP}\), \(\text{FP}\) and \(\text{FN}\) represent the number of true positives, false positives and false negatives respectively. If this case is encountered for any label, the metric for that label will be set to zero_division (0 or 1, default is 0) and the overall metric may therefore be affected in turn.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): An int or float tensor of shape(N, C, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value inthreshold
.target
(Tensor
): An int tensor of shape(N, C, ...)
.
As output to
forward
andcompute
the metric returns the following output:mlf1s
(Tensor
): A tensor whose returned shape depends on theaverage
andmultidim_average
arguments:If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the output will be a scalar tensorIf
average=None/'none'
, the shape will be(C,)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N,)
If
average=None/'none'
, the shape will be(N, C)`
If
multidim_average
is set tosamplewise
we expect at least one additional dimension...
to be present, which the reduction will then be applied over instead of the sample dimensionN
.- Parameters:
threshold¶ (
float
) – Threshold for transforming probability to binary (0,1) predictionsaverage¶ (
Optional
[Literal
['micro'
,'macro'
,'weighted'
,'none'
]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: calculates statistics for each label and computes weighted average using their support"none"
orNone
: calculates statistic for each label and applies no reduction
multidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.zero_division¶ (
float
) – Should be 0 or 1. The value returned when \(\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0\).
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.classification import MultilabelF1Score >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0, 0, 1], [1, 0, 1]]) >>> metric = MultilabelF1Score(num_labels=3) >>> metric(preds, target) tensor(0.5556) >>> mlf1s = MultilabelF1Score(num_labels=3, average=None) >>> mlf1s(preds, target) tensor([1.0000, 0.0000, 0.6667])
- Example (preds is float tensor):
>>> from torchmetrics.classification import MultilabelF1Score >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) >>> metric = MultilabelF1Score(num_labels=3) >>> metric(preds, target) tensor(0.5556) >>> mlf1s = MultilabelF1Score(num_labels=3, average=None) >>> mlf1s(preds, target) tensor([1.0000, 0.0000, 0.6667])
- Example (multidim tensors):
>>> from torchmetrics.classification import MultilabelF1Score >>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) >>> metric = MultilabelF1Score(num_labels=3, multidim_average='samplewise') >>> metric(preds, target) tensor([0.4444, 0.0000]) >>> mlf1s = MultilabelF1Score(num_labels=3, multidim_average='samplewise', average=None) >>> mlf1s(preds, target) tensor([[0.6667, 0.6667, 0.0000], [0.0000, 0.0000, 0.0000]])
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> from torch import rand, randint >>> # Example plotting a single value >>> from torchmetrics.classification import MultilabelF1Score >>> metric = MultilabelF1Score(num_labels=3) >>> metric.update(randint(2, (20, 3)), randint(2, (20, 3))) >>> fig_, ax_ = metric.plot()
>>> from torch import rand, randint >>> # Example plotting multiple values >>> from torchmetrics.classification import MultilabelF1Score >>> metric = MultilabelF1Score(num_labels=3) >>> values = [ ] >>> for _ in range(10): ... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3)))) >>> fig_, ax_ = metric.plot(values)
Functional Interface¶
f1_score¶
- torchmetrics.functional.f1_score(preds, target, task, threshold=0.5, num_classes=None, num_labels=None, average='micro', multidim_average='global', top_k=1, ignore_index=None, validate_args=True, zero_division=0)[source]¶
Compute F-1 score. :rtype:
Tensor
\[F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}\]This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'binary'
,'multiclass'
ormultilabel
. See the documentation ofbinary_f1_score()
,multiclass_f1_score()
andmultilabel_f1_score()
for the specific details of each argument influence and examples.- Legacy Example:
>>> from torch import tensor >>> target = tensor([0, 1, 2, 0, 1, 2]) >>> preds = tensor([0, 2, 1, 0, 0, 1]) >>> f1_score(preds, target, task="multiclass", num_classes=3) tensor(0.3333)
binary_f1_score¶
- torchmetrics.functional.classification.binary_f1_score(preds, target, threshold=0.5, multidim_average='global', ignore_index=None, validate_args=True, zero_division=0)[source]¶
Compute F-1 score for binary tasks.
\[F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}\]Accepts the following input tensors:
preds
(int or float tensor):(N, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value inthreshold
.target
(int tensor):(N, ...)
- Parameters:
threshold¶ (
float
) – Threshold for transforming probability to binary {0,1} predictionsmultidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.zero_division¶ (
float
) – Should be 0 or 1. The value returned when \(\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0\).
- Return type:
- Returns:
If
multidim_average
is set toglobal
, the metric returns a scalar value. Ifmultidim_average
is set tosamplewise
, the metric returns(N,)
vector consisting of a scalar value per sample.
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.functional.classification import binary_f1_score >>> target = tensor([0, 1, 0, 1, 0, 1]) >>> preds = tensor([0, 0, 1, 1, 0, 1]) >>> binary_f1_score(preds, target) tensor(0.6667)
- Example (preds is float tensor):
>>> from torchmetrics.functional.classification import binary_f1_score >>> target = tensor([0, 1, 0, 1, 0, 1]) >>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) >>> binary_f1_score(preds, target) tensor(0.6667)
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import binary_f1_score >>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) >>> binary_f1_score(preds, target, multidim_average='samplewise') tensor([0.5000, 0.0000])
multiclass_f1_score¶
- torchmetrics.functional.classification.multiclass_f1_score(preds, target, num_classes, average='macro', top_k=1, multidim_average='global', ignore_index=None, validate_args=True, zero_division=0)[source]¶
Compute F-1 score for multiclass tasks.
\[F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}\]Accepts the following input tensors:
preds
:(N, ...)
(int tensor) or(N, C, ..)
(float tensor). If preds is a floating point we applytorch.argmax
along theC
dimension to automatically convert probabilities/logits into an int tensor.target
(int tensor):(N, ...)
- Parameters:
num_classes¶ (
int
) – Integer specifying the number of classesaverage¶ (
Optional
[Literal
['micro'
,'macro'
,'weighted'
,'none'
]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: calculates statistics for each label and computes weighted average using their support"none"
orNone
: calculates statistic for each label and applies no reduction
top_k¶ (
int
) – Number of highest probability or logit score predictions considered to find the correct label. Only works whenpreds
contain probabilities/logits.multidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.zero_division¶ (
float
) – Should be 0 or 1. The value returned when \(\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0\).
- Returns:
If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the output will be a scalar tensorIf
average=None/'none'
, the shape will be(C,)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N,)
If
average=None/'none'
, the shape will be(N, C)
- Return type:
The returned shape depends on the
average
andmultidim_average
arguments
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.functional.classification import multiclass_f1_score >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([2, 1, 0, 1]) >>> multiclass_f1_score(preds, target, num_classes=3) tensor(0.7778) >>> multiclass_f1_score(preds, target, num_classes=3, average=None) tensor([0.6667, 0.6667, 1.0000])
- Example (preds is float tensor):
>>> from torchmetrics.functional.classification import multiclass_f1_score >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([[0.16, 0.26, 0.58], ... [0.22, 0.61, 0.17], ... [0.71, 0.09, 0.20], ... [0.05, 0.82, 0.13]]) >>> multiclass_f1_score(preds, target, num_classes=3) tensor(0.7778) >>> multiclass_f1_score(preds, target, num_classes=3, average=None) tensor([0.6667, 0.6667, 1.0000])
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import multiclass_f1_score >>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) >>> multiclass_f1_score(preds, target, num_classes=3, multidim_average='samplewise') tensor([0.4333, 0.2667]) >>> multiclass_f1_score(preds, target, num_classes=3, multidim_average='samplewise', average=None) tensor([[0.8000, 0.0000, 0.5000], [0.0000, 0.4000, 0.4000]])
multilabel_f1_score¶
- torchmetrics.functional.classification.multilabel_f1_score(preds, target, num_labels, threshold=0.5, average='macro', multidim_average='global', ignore_index=None, validate_args=True, zero_division=0)[source]¶
Compute F-1 score for multilabel tasks.
\[F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}\]Accepts the following input tensors:
preds
(int or float tensor):(N, C, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value inthreshold
.target
(int tensor):(N, C, ...)
- Parameters:
threshold¶ (
float
) – Threshold for transforming probability to binary (0,1) predictionsaverage¶ (
Optional
[Literal
['micro'
,'macro'
,'weighted'
,'none'
]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: calculates statistics for each label and computes weighted average using their support"none"
orNone
: calculates statistic for each label and applies no reduction
multidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.zero_division¶ (
float
) – Should be 0 or 1. The value returned when \(\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0\).
- Returns:
If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the output will be a scalar tensorIf
average=None/'none'
, the shape will be(C,)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N,)
If
average=None/'none'
, the shape will be(N, C)
- Return type:
The returned shape depends on the
average
andmultidim_average
arguments
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.functional.classification import multilabel_f1_score >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0, 0, 1], [1, 0, 1]]) >>> multilabel_f1_score(preds, target, num_labels=3) tensor(0.5556) >>> multilabel_f1_score(preds, target, num_labels=3, average=None) tensor([1.0000, 0.0000, 0.6667])
- Example (preds is float tensor):
>>> from torchmetrics.functional.classification import multilabel_f1_score >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) >>> multilabel_f1_score(preds, target, num_labels=3) tensor(0.5556) >>> multilabel_f1_score(preds, target, num_labels=3, average=None) tensor([1.0000, 0.0000, 0.6667])
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import multilabel_f1_score >>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) >>> multilabel_f1_score(preds, target, num_labels=3, multidim_average='samplewise') tensor([0.4444, 0.0000]) >>> multilabel_f1_score(preds, target, num_labels=3, multidim_average='samplewise', average=None) tensor([[0.6667, 0.6667, 0.0000], [0.0000, 0.0000, 0.0000]])