Exact Match¶
Module Interface¶
- class torchmetrics.ExactMatch(**kwargs)[source]¶
Compute Exact match (also known as subset accuracy).
Exact Match is a stricter version of accuracy where all labels have to match exactly for the sample to be correctly classified.
This module is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'multiclass'
ormultilabel
. See the documentation ofMulticlassExactMatch
andMultilabelExactMatch
for the specific details of each argument influence and examples.- Legacy Example:
>>> from torch import tensor >>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) >>> metric = ExactMatch(task="multiclass", num_classes=3, multidim_average='global') >>> metric(preds, target) tensor(0.5000)
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) >>> metric = ExactMatch(task="multiclass", num_classes=3, multidim_average='samplewise') >>> metric(preds, target) tensor([1., 0.])
MulticlassExactMatch¶
- class torchmetrics.classification.MulticlassExactMatch(num_classes, multidim_average='global', ignore_index=None, validate_args=True, **kwargs)[source]¶
Compute Exact match (also known as subset accuracy) for multiclass tasks.
Exact Match is a stricter version of accuracy where all labels have to match exactly for the sample to be correctly classified.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): An int tensor of shape(N, ...)
or float tensor of shape(N, C, ..)
. If preds is a floating point we applytorch.argmax
along theC
dimension to automatically convert probabilities/logits into an int tensor.target
(Tensor
): An int tensor of shape(N, ...)
.
As output to
forward
andcompute
the metric returns the following output:mcem
(Tensor
): A tensor whose returned shape depends on themultidim_average
argument:If
multidim_average
is set toglobal
the output will be a scalar tensorIf
multidim_average
is set tosamplewise
the output will be a tensor of shape(N,)
If
multidim_average
is set tosamplewise
we expect at least one additional dimension...
to be present, which the reduction will then be applied over instead of the sample dimensionN
.- Parameters:
num_classes¶ (
int
) – Integer specifying the number of labelsmultidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Example (multidim tensors):
>>> from torch import tensor >>> from torchmetrics.classification import MulticlassExactMatch >>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) >>> metric = MulticlassExactMatch(num_classes=3, multidim_average='global') >>> metric(preds, target) tensor(0.5000)
- Example (multidim tensors):
>>> from torchmetrics.classification import MulticlassExactMatch >>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) >>> metric = MulticlassExactMatch(num_classes=3, multidim_average='samplewise') >>> metric(preds, target) tensor([1., 0.])
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure object and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value per class >>> from torch import randint >>> from torchmetrics.classification import MulticlassExactMatch >>> metric = MulticlassExactMatch(num_classes=3) >>> metric.update(randint(3, (20,5)), randint(3, (20,5))) >>> fig_, ax_ = metric.plot()
>>> from torch import randint >>> # Example plotting a multiple values per class >>> from torchmetrics.classification import MulticlassExactMatch >>> metric = MulticlassExactMatch(num_classes=3) >>> values = [] >>> for _ in range(20): ... values.append(metric(randint(3, (20,5)), randint(3, (20,5)))) >>> fig_, ax_ = metric.plot(values)
MultilabelExactMatch¶
- class torchmetrics.classification.MultilabelExactMatch(num_labels, threshold=0.5, multidim_average='global', ignore_index=None, validate_args=True, **kwargs)[source]¶
Compute Exact match (also known as subset accuracy) for multilabel tasks.
Exact Match is a stricter version of accuracy where all labels have to match exactly for the sample to be correctly classified.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): An int tensor or float tensor of shape(N, C, ..)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value inthreshold
.target
(Tensor
): An int tensor of shape(N, C, ...)
.
As output to
forward
andcompute
the metric returns the following output:mlem
(Tensor
): A tensor whose returned shape depends on themultidim_average
argument:If
multidim_average
is set toglobal
the output will be a scalar tensorIf
multidim_average
is set tosamplewise
the output will be a tensor of shape(N,)
If
multidim_average
is set tosamplewise
we expect at least one additional dimension...
to be present, which the reduction will then be applied over instead of the sample dimensionN
.- Parameters:
threshold¶ (
float
) – Threshold for transforming probability to binary (0,1) predictionsmultidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.classification import MultilabelExactMatch >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0, 0, 1], [1, 0, 1]]) >>> metric = MultilabelExactMatch(num_labels=3) >>> metric(preds, target) tensor(0.5000)
- Example (preds is float tensor):
>>> from torchmetrics.classification import MultilabelExactMatch >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) >>> metric = MultilabelExactMatch(num_labels=3) >>> metric(preds, target) tensor(0.5000)
- Example (multidim tensors):
>>> from torchmetrics.classification import MultilabelExactMatch >>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) >>> metric = MultilabelExactMatch(num_labels=3, multidim_average='samplewise') >>> metric(preds, target) tensor([0., 0.])
- plot(val=None, ax=None)[source]¶
Plot a single or multiple values from the metric.
- Parameters:
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> from torch import rand, randint >>> from torchmetrics.classification import MultilabelExactMatch >>> metric = MultilabelExactMatch(num_labels=3) >>> metric.update(randint(2, (20, 3, 5)), randint(2, (20, 3, 5))) >>> fig_, ax_ = metric.plot()
>>> # Example plotting multiple values >>> from torch import rand, randint >>> from torchmetrics.classification import MultilabelExactMatch >>> metric = MultilabelExactMatch(num_labels=3) >>> values = [ ] >>> for _ in range(10): ... values.append(metric(randint(2, (20, 3, 5)), randint(2, (20, 3, 5)))) >>> fig_, ax_ = metric.plot(values)
Functional Interface¶
exact_match¶
- torchmetrics.functional.classification.exact_match(preds, target, task, num_classes=None, num_labels=None, threshold=0.5, multidim_average='global', ignore_index=None, validate_args=True)[source]¶
Compute Exact match (also known as subset accuracy).
Exact Match is a stricter version of accuracy where all classes/labels have to match exactly for the sample to be correctly classified.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'multiclass'
or'multilabel'
. See the documentation ofmulticlass_exact_match()
andmultilabel_exact_match()
for the specific details of each argument influence and examples.- Return type:
- Legacy Example:
>>> from torch import tensor >>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) >>> exact_match(preds, target, task="multiclass", num_classes=3, multidim_average='global') tensor(0.5000)
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) >>> exact_match(preds, target, task="multiclass", num_classes=3, multidim_average='samplewise') tensor([1., 0.])
multiclass_exact_match¶
- torchmetrics.functional.classification.multiclass_exact_match(preds, target, num_classes, multidim_average='global', ignore_index=None, validate_args=True)[source]¶
Compute Exact match (also known as subset accuracy) for multiclass tasks.
Exact Match is a stricter version of accuracy where all labels have to match exactly for the sample to be correctly classified.
Accepts the following input tensors:
preds
:(N, ...)
(int tensor) or(N, C, ..)
(float tensor). If preds is a floating point we applytorch.argmax
along theC
dimension to automatically convert probabilities/logits into an int tensor.target
(int tensor):(N, ...)
- Parameters:
num_classes¶ (
int
) – Integer specifying the number of labelsmultidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Returns:
If
multidim_average
is set toglobal
the output will be a scalar tensorIf
multidim_average
is set tosamplewise
the output will be a tensor of shape(N,)
- Return type:
The returned shape depends on the
multidim_average
argument
- Example (multidim tensors):
>>> from torch import tensor >>> from torchmetrics.functional.classification import multiclass_exact_match >>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) >>> multiclass_exact_match(preds, target, num_classes=3, multidim_average='global') tensor(0.5000)
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import multiclass_exact_match >>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) >>> multiclass_exact_match(preds, target, num_classes=3, multidim_average='samplewise') tensor([1., 0.])
multilabel_exact_match¶
- torchmetrics.functional.classification.multilabel_exact_match(preds, target, num_labels, threshold=0.5, multidim_average='global', ignore_index=None, validate_args=True)[source]¶
Compute Exact match (also known as subset accuracy) for multilabel tasks.
Exact Match is a stricter version of accuracy where all labels have to match exactly for the sample to be correctly classified.
Accepts the following input tensors:
preds
(int or float tensor):(N, C, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value inthreshold
.target
(int tensor):(N, C, ...)
- Parameters:
threshold¶ (
float
) – Threshold for transforming probability to binary (0,1) predictionsmultidim_average¶ (
Literal
['global'
,'samplewise'
]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Returns:
If
multidim_average
is set toglobal
the output will be a scalar tensorIf
multidim_average
is set tosamplewise
the output will be a tensor of shape(N,)
- Return type:
The returned shape depends on the
multidim_average
argument
- Example (preds is int tensor):
>>> from torch import tensor >>> from torchmetrics.functional.classification import multilabel_exact_match >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0, 0, 1], [1, 0, 1]]) >>> multilabel_exact_match(preds, target, num_labels=3) tensor(0.5000)
- Example (preds is float tensor):
>>> from torchmetrics.functional.classification import multilabel_exact_match >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) >>> multilabel_exact_match(preds, target, num_labels=3) tensor(0.5000)
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import multilabel_exact_match >>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) >>> multilabel_exact_match(preds, target, num_labels=3, multidim_average='samplewise') tensor([0., 0.])