Retrieval Mean Reciprocal Rank (MRR)
Module Interface
- class torchmetrics.retrieval.RetrievalMRR(empty_target_action='neg', ignore_index=None, **kwargs)[source]
Compute Mean Reciprocal Rank.
Works with binary target data. Accepts float predictions from a model output.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A float tensor of shape(N, ...)
target
(Tensor
): A long or bool tensor of shape(N, ...)
indexes
(Tensor
): A long tensor of shape(N, ...)
which indicate to which query a prediction belongs
As output to
forward
andcompute
the metric returns the following output:mrr
(Tensor
): A single-value tensor with the reciprocal rank (RR) of the predictionspreds
w.r.t. the labelstarget
All
indexes
,preds
andtarget
must have the same dimension and will be flatten at the beginning, so that for example, a tensor of shape(N, M)
is treated as(N * M, )
. Predictions will be first grouped byindexes
and then will be computed as the mean of the metric over each query.- Parameters:
empty_target_action (
str
) –Specify what to do with queries that do not have at least a positive
target
. Choose from:'neg'
: those queries count as0.0
(default)'pos'
: those queries count as1.0
'skip'
: skip those queries; if all queries are skipped,0.0
is returned'error'
: raise aValueError
ignore_index (
Optional
[int
]) – Ignore predictions where the target is equal to this number.kwargs (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Raises:
ValueError – If
empty_target_action
is not one oferror
,skip
,neg
orpos
.ValueError – If
ignore_index
is not None or an integer.
Example
>>> from torch import tensor >>> from torchmetrics.retrieval import RetrievalMRR >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1]) >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2]) >>> target = tensor([False, False, True, False, True, False, True]) >>> mrr = RetrievalMRR() >>> mrr(preds, target, indexes=indexes) tensor(0.7500)
- plot(val=None, ax=None)[source]
Plot a single or multiple values from the metric.
- Parameters:
val (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> import torch >>> from torchmetrics.retrieval import RetrievalMRR >>> # Example plotting a single value >>> metric = RetrievalMRR() >>> metric.update(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,))) >>> fig_, ax_ = metric.plot()
>>> import torch >>> from torchmetrics.retrieval import RetrievalMRR >>> # Example plotting multiple values >>> metric = RetrievalMRR() >>> values = [] >>> for _ in range(10): ... values.append(metric(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,)))) >>> fig, ax = metric.plot(values)
Functional Interface
- torchmetrics.functional.retrieval.retrieval_reciprocal_rank(preds, target)[source]
Compute reciprocal rank (for information retrieval). See Mean Reciprocal Rank.
preds
andtarget
should be of the same shape and live on the same device. If notarget
isTrue
, 0 is returned.target
must be either bool or integers andpreds
must befloat
, otherwise an error is raised.- Parameters:
- Return type:
- Returns:
a single-value tensor with the reciprocal rank (RR) of the predictions
preds
wrt the labelstarget
.
Example
>>> from torchmetrics.functional.retrieval import retrieval_reciprocal_rank >>> preds = torch.tensor([0.2, 0.3, 0.5]) >>> target = torch.tensor([False, True, False]) >>> retrieval_reciprocal_rank(preds, target) tensor(0.5000)