Error Relative Global Dim. Synthesis (ERGAS)
Module Interface
- class torchmetrics.image.ErrorRelativeGlobalDimensionlessSynthesis(ratio=4, reduction='elementwise_mean', **kwargs)[source]
Calculate Relative dimensionless global error synthesis (ERGAS).
This metric is used to calculate the accuracy of Pan sharpened image considering normalized average error of each band of the result image.
As input to
forward
andupdate
the metric accepts the following inputAs output of forward and compute the metric returns the following output
ergas
(Tensor
): ifreduction!='none'
returns float scalar tensor with average ERGAS value over sample else returns tensor of shape(N,)
with ERGAS values per sample
- Parameters:
ratio (
Union
[int
,float
]) – ratio of high resolution to low resolutionreduction (
Literal
['elementwise_mean'
,'sum'
,'none'
,None
]) –a method to reduce metric score over labels.
'elementwise_mean'
: takes the mean (default)'sum'
: takes the sum'none'
orNone
: no reduction will be applied
kwargs (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> import torch >>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis >>> preds = torch.rand([16, 1, 16, 16], generator=torch.manual_seed(42)) >>> target = preds * 0.75 >>> ergas = ErrorRelativeGlobalDimensionlessSynthesis() >>> torch.round(ergas(preds, target)) tensor(154.)
- plot(val=None, ax=None)[source]
Plot a single or multiple values from the metric.
- Parameters:
val (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type:
- Returns:
Figure and Axes object
- Raises:
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> import torch >>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis >>> preds = torch.rand([16, 1, 16, 16], generator=torch.manual_seed(42)) >>> target = preds * 0.75 >>> metric = ErrorRelativeGlobalDimensionlessSynthesis() >>> metric.update(preds, target) >>> fig_, ax_ = metric.plot()
>>> # Example plotting multiple values >>> import torch >>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis >>> preds = torch.rand([16, 1, 16, 16], generator=torch.manual_seed(42)) >>> target = preds * 0.75 >>> metric = ErrorRelativeGlobalDimensionlessSynthesis() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(preds, target)) >>> fig_, ax_ = metric.plot(values)
Functional Interface
- torchmetrics.functional.image.error_relative_global_dimensionless_synthesis(preds, target, ratio=4, reduction='elementwise_mean')[source]
Erreur Relative Globale Adimensionnelle de Synthèse.
- Parameters:
preds (
Tensor
) – estimated imagetarget (
Tensor
) – ground truth imageratio (
Union
[int
,float
]) – ratio of high resolution to low resolutionreduction (
Literal
['elementwise_mean'
,'sum'
,'none'
,None
]) –a method to reduce metric score over labels.
'elementwise_mean'
: takes the mean (default)'sum'
: takes the sum'none'
orNone
: no reduction will be applied
- Return type:
- Returns:
Tensor with RelativeG score
- Raises:
TypeError – If
preds
andtarget
don’t have the same data type.ValueError – If
preds
andtarget
don’t haveBxCxHxW shape
.
Example
>>> from torchmetrics.functional.image import error_relative_global_dimensionless_synthesis >>> preds = torch.rand([16, 1, 16, 16], generator=torch.manual_seed(42)) >>> target = preds * 0.75 >>> ergds = error_relative_global_dimensionless_synthesis(preds, target) >>> torch.round(ergds) tensor(154.)
References
[1] Qian Du; Nicholas H. Younan; Roger King; Vijay P. Shah, “On the Performance Evaluation of Pan-Sharpening Techniques” in IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 4, pp. 518-522, 15 October 2007, doi: 10.1109/LGRS.2007.896328.