Eliminate config boilerplate (Intermediate)¶
Audience: Users who want advanced modularity via the commandline interface (CLI).
Pre-reqs: You must already understand how to use a commandline and LightningDataModule.
What is config boilerplate?¶
As Lightning projects grow in complexity it becomes desirable to enable full customizability from the commandline (CLI) so you can change any hyperparameters without changing your code:
# Mix and match anything
$ python main.py fit --model.learning_rate 0.02
$ python main.py fit --model.learning_rate 0.01 --trainer.fast_dev_run True
This is what the Lightning CLI enables. Without the Lightning CLI, you usually end up with a TON of boilerplate that looks like this:
from argparse import ArgumentParser
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--learning_rate_1", default=0.02)
parser.add_argument("--learning_rate_2", default=0.03)
parser.add_argument("--model", default="cnn")
parser.add_argument("--command", default="fit")
parser.add_argument("--run_fast", default=True)
...
# add 100 more of these
...
args = parser.parse_args()
if args.model == "cnn":
model = ConvNet(learning_rate=args.learning_rate_1)
elif args.model == "transformer":
model = Transformer(learning_rate=args.learning_rate_2)
trainer = Trainer(fast_dev_run=args.run_fast)
...
if args.command == "fit":
trainer.fit()
elif args.command == "test":
...
This kind of boilerplate is unsustainable as projects grow in complexity.
Enable the Lightning CLI¶
To enable the Lightning CLI install the extras:
pip install pytorch-lightning[extra]
if the above fails, only install jsonargparse:
pip install -U jsonargparse[signatures]
Connect a model to the CLI¶
The simplest way to control a model with the CLI is to wrap it in the LightningCLI object:
# main.py
import torch
from pytorch_lightning.cli import LightningCLI
# simple demo classes for your convenience
from pytorch_lightning.demos.boring_classes import DemoModel, BoringDataModule
def cli_main():
cli = LightningCLI(DemoModel, BoringDataModule)
# note: don't call fit!!
if __name__ == "__main__":
cli_main()
# note: it is good practice to implement the CLI in a function and call it in the main if block
Now your model can be managed via the CLI. To see the available commands type:
$ python main.py --help
Which prints out:
usage: main.py [-h] [-c CONFIG] [--print_config [={comments,skip_null,skip_default}+]]
{fit,validate,test,predict,tune} ...
pytorch-lightning trainer command line tool
optional arguments:
-h, --help Show this help message and exit.
-c CONFIG, --config CONFIG
Path to a configuration file in json or yaml format.
--print_config [={comments,skip_null,skip_default}+]
Print configuration and exit.
subcommands:
For more details of each subcommand add it as argument followed by --help.
{fit,validate,test,predict,tune}
fit Runs the full optimization routine.
validate Perform one evaluation epoch over the validation set.
test Perform one evaluation epoch over the test set.
predict Run inference on your data.
tune Runs routines to tune hyperparameters before training.
the message tells us that we have a few available subcommands:
python main.py [subcommand]
which you can use depending on your use case:
$ python main.py fit
$ python main.py validate
$ python main.py test
$ python main.py predict
$ python main.py tune
Train a model with the CLI¶
To run the full training routine (train, val, test), use the subcommand fit
:
python main.py fit
View all available options with the --help
command:
usage: main.py [options] fit [-h] [-c CONFIG]
[--seed_everything SEED_EVERYTHING] [--trainer CONFIG]
...
[--ckpt_path CKPT_PATH]
--trainer.logger LOGGER
optional arguments:
<class '__main__.DemoModel'>:
--model.out_dim OUT_DIM
(type: int, default: 10)
--model.learning_rate LEARNING_RATE
(type: float, default: 0.02)
<class 'pytorch_lightning.demos.boring_classes.BoringDataModule'>:
--data CONFIG Path to a configuration file.
--data.data_dir DATA_DIR
(type: str, default: ./)
With the Lightning CLI enabled, you can now change the parameters without touching your code:
# change the learning_rate
python main.py fit --model.out_dim 30
# change the out dimensions also
python main.py fit --model.out_dim 10 --model.learning_rate 0.1
# change trainer and data arguments too
python main.py fit --model.out_dim 2 --model.learning_rate 0.1 --data.data_dir '~/' --trainer.logger False