Shortcuts

Transfer Learning

Audience: Users looking to use pretrained models with Lightning.


Use any PyTorch nn.Module

Any model that is a PyTorch nn.Module can be used with Lightning (because LightningModules are nn.Modules also).


Use a pretrained LightningModule

Let’s use the AutoEncoder as a feature extractor in a separate model.

class Encoder(torch.nn.Module):
    ...


class AutoEncoder(LightningModule):
    def __init__(self):
        self.encoder = Encoder()
        self.decoder = Decoder()


class CIFAR10Classifier(LightningModule):
    def __init__(self):
        # init the pretrained LightningModule
        self.feature_extractor = AutoEncoder.load_from_checkpoint(PATH)
        self.feature_extractor.freeze()

        # the autoencoder outputs a 100-dim representation and CIFAR-10 has 10 classes
        self.classifier = nn.Linear(100, 10)

    def forward(self, x):
        representations = self.feature_extractor(x)
        x = self.classifier(representations)
        ...

We used our pretrained Autoencoder (a LightningModule) for transfer learning!


Example: Imagenet (Computer Vision)

import torchvision.models as models


class ImagenetTransferLearning(LightningModule):
    def __init__(self):
        super().__init__()

        # init a pretrained resnet
        backbone = models.resnet50(weights="DEFAULT")
        num_filters = backbone.fc.in_features
        layers = list(backbone.children())[:-1]
        self.feature_extractor = nn.Sequential(*layers)

        # use the pretrained model to classify cifar-10 (10 image classes)
        num_target_classes = 10
        self.classifier = nn.Linear(num_filters, num_target_classes)

    def forward(self, x):
        self.feature_extractor.eval()
        with torch.no_grad():
            representations = self.feature_extractor(x).flatten(1)
        x = self.classifier(representations)
        ...

Finetune

model = ImagenetTransferLearning()
trainer = Trainer()
trainer.fit(model)

And use it to predict your data of interest

model = ImagenetTransferLearning.load_from_checkpoint(PATH)
model.freeze()

x = some_images_from_cifar10()
predictions = model(x)

We used a pretrained model on imagenet, finetuned on CIFAR-10 to predict on CIFAR-10. In the non-academic world we would finetune on a tiny dataset you have and predict on your dataset.


Example: BERT (NLP)

Lightning is completely agnostic to what’s used for transfer learning so long as it is a torch.nn.Module subclass.

Here’s a model that uses Huggingface transformers.

class BertMNLIFinetuner(LightningModule):
    def __init__(self):
        super().__init__()

        self.bert = BertModel.from_pretrained("bert-base-cased", output_attentions=True)
        self.W = nn.Linear(bert.config.hidden_size, 3)
        self.num_classes = 3

    def forward(self, input_ids, attention_mask, token_type_ids):

        h, _, attn = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)

        h_cls = h[:, 0]
        logits = self.W(h_cls)
        return logits, attn