Manage Experiments¶
To track other artifacts, such as histograms or model topology graphs first select one of the many experiment managers (loggers) supported by Lightning
from pytorch_lightning import loggers as pl_loggers
tensorboard = pl_loggers.TensorBoardLogger()
trainer = Trainer(logger=tensorboard)
then access the logger’s API directly
def training_step(self):
tensorboard = self.logger.experiment
tensorboard.add_image()
tensorboard.add_histogram(...)
tensorboard.add_figure(...)
Comet.ml¶
To use Comet.ml first install the comet package:
pip install comet-ml
Configure the logger and pass it to the Trainer
:
from pytorch_lightning.loggers import CometLogger
comet_logger = CometLogger(api_key="YOUR_COMET_API_KEY")
trainer = Trainer(logger=comet_logger)
Access the comet logger from any function (except the LightningModule init) to use its API for tracking advanced artifacts
class LitModel(LightningModule):
def any_lightning_module_function_or_hook(self):
comet = self.logger.experiment
fake_images = torch.Tensor(32, 3, 28, 28)
comet.add_image("generated_images", fake_images, 0)
Here’s the full documentation for the CometLogger
.
MLflow¶
To use MLflow first install the MLflow package:
pip install mlflow
Configure the logger and pass it to the Trainer
:
from pytorch_lightning.loggers import MLFlowLogger
mlf_logger = MLFlowLogger(experiment_name="lightning_logs", tracking_uri="file:./ml-runs")
trainer = Trainer(logger=mlf_logger)
Access the mlflow logger from any function (except the LightningModule init) to use its API for tracking advanced artifacts
class LitModel(LightningModule):
def any_lightning_module_function_or_hook(self):
mlf_logger = self.logger.experiment
fake_images = torch.Tensor(32, 3, 28, 28)
mlf_logger.add_image("generated_images", fake_images, 0)
Here’s the full documentation for the MLFlowLogger
.
Neptune.ai¶
To use Neptune.ai first install the neptune package:
pip install neptune-client
or with conda:
conda install -c conda-forge neptune-client
Configure the logger and pass it to the Trainer
:
from pytorch_lightning.loggers import NeptuneLogger
neptune_logger = NeptuneLogger(
api_key="ANONYMOUS", # replace with your own
project="common/pytorch-lightning-integration", # format "<WORKSPACE/PROJECT>"
)
trainer = Trainer(logger=neptune_logger)
Access the neptune logger from any function (except the LightningModule init) to use its API for tracking advanced artifacts
class LitModel(LightningModule):
def any_lightning_module_function_or_hook(self):
neptune_logger = self.logger.experiment["your/metadata/structure"]
neptune_logger.log(metadata)
Here’s the full documentation for the NeptuneLogger
.
Tensorboard¶
TensorBoard already comes installed with Lightning. If you removed the install install the following package.
pip install tensorboard
Configure the logger and pass it to the Trainer
:
from pytorch_lightning.loggers import TensorBoardLogger
logger = TensorBoardLogger()
trainer = Trainer(logger=logger)
Access the tensorboard logger from any function (except the LightningModule init) to use its API for tracking advanced artifacts
class LitModel(LightningModule):
def any_lightning_module_function_or_hook(self):
tensorboard_logger = self.logger.experiment
fake_images = torch.Tensor(32, 3, 28, 28)
tensorboard_logger.add_image("generated_images", fake_images, 0)
Here’s the full documentation for the TensorBoardLogger
.
Weights and Biases¶
To use Weights and Biases (wandb) first install the wandb package:
pip install wandb
Configure the logger and pass it to the Trainer
:
from pytorch_lightning.loggers import WandbLogger
wandb_logger = WandbLogger(project="MNIST", log_model="all")
trainer = Trainer(logger=wandb_logger)
# log gradients and model topology
wandb_logger.watch(model)
Access the wandb logger from any function (except the LightningModule init) to use its API for tracking advanced artifacts
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
wandb_logger = self.logger.experiment
fake_images = torch.Tensor(32, 3, 28, 28)
# Option 1
wandb_logger.log({"generated_images": [wandb.Image(fake_images, caption="...")]})
# Option 2 for specifically logging images
wandb_logger.log_image(key="generated_images", images=[fake_images])
Here’s the full documentation for the WandbLogger
.
Demo in Google Colab with hyperparameter search and model logging.
Use multiple exp managers¶
To use multiple experiment managers at the same time, pass a list to the logger Trainer
argument.
from pytorch_lightning.loggers import TensorBoardLogger, WandbLogger
logger1 = TensorBoardLogger()
logger2 = WandbLogger()
trainer = Trainer(logger=[logger1, logger2])
Access all loggers from any function (except the LightningModule init) to use their APIs for tracking advanced artifacts
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
tensorboard_logger = self.logger.experiment[0]
wandb_logger = self.logger.experiment[1]
fake_images = torch.Tensor(32, 3, 28, 28)
tensorboard_logger.add_image("generated_images", fake_images, 0)
wandb_logger.add_image("generated_images", fake_images, 0)