PrecisionPlugin¶
- class pytorch_lightning.plugins.precision.PrecisionPlugin[source]¶
Bases:
lightning_lite.plugins.precision.precision.Precision
,pytorch_lightning.core.hooks.CheckpointHooks
Base class for all plugins handling the precision-specific parts of the training.
The class attribute precision must be overwritten in child classes. The default value reflects fp32 training.
- backward(tensor, model, optimizer, optimizer_idx, *args, **kwargs)[source]¶
Performs the actual backpropagation.
- Parameters:
model¶ (
LightningModule
) – the model to be optimizedoptimizer¶ (
Optional
[Steppable
]) – current optimizer being used.None
if using manual optimizationoptimizer_idx¶ (
Optional
[int
]) – the index of the current optimizer.None
if using manual optimization*args¶ (
Any
) – Positional arguments intended for the actual function that performs the backward, likebackward()
.**kwargs¶ (
Any
) – Keyword arguments for the same purpose as*args
.
- Return type:
- clip_gradients(optimizer, clip_val=0.0, gradient_clip_algorithm=GradClipAlgorithmType.NORM)[source]¶
Clips the gradients.
- Return type:
- connect(model, optimizers, lr_schedulers)[source]¶
Connects this plugin to the accelerator and the training process.
- optimizer_step(optimizer, model, optimizer_idx, closure, **kwargs)[source]¶
Hook to run the optimizer step.
- Return type:
- post_backward(tensor, module)[source]¶
Runs after precision plugin executes backward.
- Parameters:
tensor¶ (
Tensor
) – The tensor that will be used for backpropagationmodule¶ (
LightningModule
) – The module that was involved in producing the tensor and whose parameters need the gradients
- Return type:
- pre_backward(tensor, module)[source]¶
Runs before precision plugin executes backward.
- Parameters:
tensor¶ (
Tensor
) – The tensor that will be used for backpropagationmodule¶ (
LightningModule
) – The module that was involved in producing the tensor and whose parameters need the gradients
- Return type: