Shortcuts

Source code for pytorch_lightning.utilities.cli

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Deprecated utilities for LightningCLI."""

import inspect
from types import ModuleType
from typing import Any, Generator, List, Optional, Tuple, Type

import torch
from lightning_utilities.core.inheritance import get_all_subclasses
from torch.optim import Optimizer

import pytorch_lightning as pl
import pytorch_lightning.cli as new_cli
from pytorch_lightning.utilities.rank_zero import rank_zero_deprecation

_deprecate_registry_message = (
    "`LightningCLI`'s registries were deprecated in v1.7 and will be removed "
    "in v1.9. Now any imported subclass is automatically available by name in "
    "`LightningCLI` without any need to explicitly register it."
)

_deprecate_auto_registry_message = (
    "`LightningCLI.auto_registry` parameter was deprecated in v1.7 and will be removed "
    "in v1.9. Now any imported subclass is automatically available by name in "
    "`LightningCLI` without any need to explicitly register it."
)


class _Registry(dict):  # Remove in v1.9
    def __call__(
        self, cls: Type, key: Optional[str] = None, override: bool = False, show_deprecation: bool = True
    ) -> Type:
        """Registers a class mapped to a name.

        Args:
            cls: the class to be mapped.
            key: the name that identifies the provided class.
            override: Whether to override an existing key.
        """
        if key is None:
            key = cls.__name__
        elif not isinstance(key, str):
            raise TypeError(f"`key` must be a str, found {key}")

        if key not in self or override:
            self[key] = cls

        self._deprecation(show_deprecation)
        return cls

    def register_classes(
        self, module: ModuleType, base_cls: Type, override: bool = False, show_deprecation: bool = True
    ) -> None:
        """This function is an utility to register all classes from a module."""
        for cls in self.get_members(module, base_cls):
            self(cls=cls, override=override, show_deprecation=show_deprecation)

    @staticmethod
    def get_members(module: ModuleType, base_cls: Type) -> Generator[Type, None, None]:
        return (
            cls
            for _, cls in inspect.getmembers(module, predicate=inspect.isclass)
            if issubclass(cls, base_cls) and cls != base_cls
        )

    @property
    def names(self) -> List[str]:
        """Returns the registered names."""
        self._deprecation()
        return list(self.keys())

    @property
    def classes(self) -> Tuple[Type, ...]:
        """Returns the registered classes."""
        self._deprecation()
        return tuple(self.values())

    def __str__(self) -> str:
        return f"Registered objects: {self.names}"

    def _deprecation(self, show_deprecation: bool = True) -> None:
        if show_deprecation and not getattr(self, "deprecation_shown", False):
            rank_zero_deprecation(_deprecate_registry_message)
            self.deprecation_shown = True


OPTIMIZER_REGISTRY = _Registry()
LR_SCHEDULER_REGISTRY = _Registry()
CALLBACK_REGISTRY = _Registry()
MODEL_REGISTRY = _Registry()
DATAMODULE_REGISTRY = _Registry()
LOGGER_REGISTRY = _Registry()


def _populate_registries(subclasses: bool) -> None:  # Remove in v1.9
    if subclasses:
        rank_zero_deprecation(_deprecate_auto_registry_message)
        # this will register any subclasses from all loaded modules including userland
        for cls in get_all_subclasses(torch.optim.Optimizer):
            OPTIMIZER_REGISTRY(cls, show_deprecation=False)
        for cls in get_all_subclasses(torch.optim.lr_scheduler._LRScheduler):
            LR_SCHEDULER_REGISTRY(cls, show_deprecation=False)
        for cls in get_all_subclasses(pl.Callback):
            CALLBACK_REGISTRY(cls, show_deprecation=False)
        for cls in get_all_subclasses(pl.LightningModule):
            MODEL_REGISTRY(cls, show_deprecation=False)
        for cls in get_all_subclasses(pl.LightningDataModule):
            DATAMODULE_REGISTRY(cls, show_deprecation=False)
        for cls in get_all_subclasses(pl.loggers.Logger):
            LOGGER_REGISTRY(cls, show_deprecation=False)
    else:
        # manually register torch's subclasses and our subclasses
        OPTIMIZER_REGISTRY.register_classes(torch.optim, Optimizer, show_deprecation=False)
        LR_SCHEDULER_REGISTRY.register_classes(
            torch.optim.lr_scheduler, torch.optim.lr_scheduler._LRScheduler, show_deprecation=False
        )
        CALLBACK_REGISTRY.register_classes(pl.callbacks, pl.Callback, show_deprecation=False)
        LOGGER_REGISTRY.register_classes(pl.loggers, pl.loggers.Logger, show_deprecation=False)
    # `ReduceLROnPlateau` does not subclass `_LRScheduler`
    LR_SCHEDULER_REGISTRY(cls=new_cli.ReduceLROnPlateau, show_deprecation=False)


def _deprecation(cls: Type) -> None:
    rank_zero_deprecation(
        f"`pytorch_lightning.utilities.cli.{cls.__name__}` has been deprecated in v1.7 and will be removed in v1.9."
        f" Use the equivalent class in `pytorch_lightning.cli.{cls.__name__}` instead."
    )


[docs]class LightningArgumentParser(new_cli.LightningArgumentParser): def __init__(self, *args: Any, **kwargs: Any) -> None: _deprecation(type(self)) super().__init__(*args, **kwargs)
[docs]class SaveConfigCallback(new_cli.SaveConfigCallback): def __init__(self, *args: Any, **kwargs: Any) -> None: _deprecation(type(self)) super().__init__(*args, **kwargs)
[docs]class LightningCLI(new_cli.LightningCLI): def __init__(self, *args: Any, **kwargs: Any) -> None: _deprecation(type(self)) super().__init__(*args, **kwargs)
def instantiate_class(*args: Any, **kwargs: Any) -> Any: rank_zero_deprecation( "`pytorch_lightning.utilities.cli.instantiate_class` has been deprecated in v1.7 and will be removed in v1.9." " Use the equivalent function in `pytorch_lightning.cli.instantiate_class` instead." ) return new_cli.instantiate_class(*args, **kwargs)

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.