Source code for pytorch_lightning.tuner.tuning
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Union
from typing_extensions import Literal, NotRequired, TypedDict
import pytorch_lightning as pl
from pytorch_lightning.callbacks.batch_size_finder import BatchSizeFinder
from pytorch_lightning.callbacks.callback import Callback
from pytorch_lightning.callbacks.lr_finder import LearningRateFinder
from pytorch_lightning.core.datamodule import LightningDataModule
from pytorch_lightning.trainer.states import TrainerStatus
from pytorch_lightning.tuner.lr_finder import _LRFinder
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.types import EVAL_DATALOADERS, TRAIN_DATALOADERS
class _TunerResult(TypedDict):
lr_find: NotRequired[Optional[_LRFinder]]
scale_batch_size: NotRequired[Optional[int]]
[docs]class Tuner:
"""Tuner class to tune your model."""
def __init__(self, trainer: "pl.Trainer") -> None:
self.trainer = trainer
def on_trainer_init(self, auto_lr_find: Union[str, bool], auto_scale_batch_size: Union[str, bool]) -> None:
self.trainer.auto_lr_find = auto_lr_find
self.trainer.auto_scale_batch_size = auto_scale_batch_size
def _tune(
self,
model: "pl.LightningModule",
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, LightningDataModule]] = None,
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
dataloaders: Optional[EVAL_DATALOADERS] = None,
datamodule: Optional[LightningDataModule] = None,
scale_batch_size_kwargs: Optional[Dict[str, Any]] = None,
lr_find_kwargs: Optional[Dict[str, Any]] = None,
method: Literal["fit", "validate", "test", "predict"] = "fit",
) -> _TunerResult:
scale_batch_size_kwargs = scale_batch_size_kwargs or {}
lr_find_kwargs = lr_find_kwargs or {}
# return a dict instead of a tuple so BC is not broken if a new tuning procedure is added
result = _TunerResult()
self.trainer.strategy.connect(model)
is_tuning = self.trainer.auto_scale_batch_size or self.trainer.auto_lr_find
if self.trainer._accelerator_connector.is_distributed and is_tuning:
raise MisconfigurationException(
"`trainer.tune()` is currently not supported with"
f" `Trainer(strategy={self.trainer.strategy.strategy_name!r})`."
)
# Run auto batch size scaling
if self.trainer.auto_scale_batch_size:
if isinstance(self.trainer.auto_scale_batch_size, str):
scale_batch_size_kwargs.setdefault("mode", self.trainer.auto_scale_batch_size)
result["scale_batch_size"] = self.scale_batch_size(
model, train_dataloaders, val_dataloaders, dataloaders, datamodule, method, **scale_batch_size_kwargs
)
# Run learning rate finder:
if self.trainer.auto_lr_find:
self.trainer.state.status = TrainerStatus.RUNNING
# TODO: Remove this once LRFinder is converted to a Callback
# if a datamodule comes in as the second arg, then fix it for the user
if isinstance(train_dataloaders, LightningDataModule):
datamodule = train_dataloaders
train_dataloaders = None
# If you supply a datamodule you can't supply train_dataloader or val_dataloaders
if (train_dataloaders is not None or val_dataloaders is not None) and datamodule is not None:
raise MisconfigurationException(
"You cannot pass `train_dataloader` or `val_dataloaders` to `trainer.tune()`"
" if datamodule is already passed."
)
# links da_a to the trainer
self.trainer._data_connector.attach_data(
model, train_dataloaders=train_dataloaders, val_dataloaders=val_dataloaders, datamodule=datamodule
)
lr_find_kwargs.setdefault("update_attr", True)
result["lr_find"] = self.lr_find(
model, train_dataloaders, val_dataloaders, dataloaders, datamodule, method, **lr_find_kwargs
)
self.trainer.state.status = TrainerStatus.FINISHED
return result
def _run(self, *args: Any, **kwargs: Any) -> None:
"""`_run` wrapper to set the proper state during tuning, as this can be called multiple times."""
self.trainer.state.status = TrainerStatus.RUNNING # last `_run` call might have set it to `FINISHED`
self.trainer.training = True
self.trainer._run(*args, **kwargs)
[docs] def scale_batch_size(
self,
model: "pl.LightningModule",
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None,
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
dataloaders: Optional[EVAL_DATALOADERS] = None,
datamodule: Optional["pl.LightningDataModule"] = None,
method: Literal["fit", "validate", "test", "predict"] = "fit",
mode: str = "power",
steps_per_trial: int = 3,
init_val: int = 2,
max_trials: int = 25,
batch_arg_name: str = "batch_size",
) -> Optional[int]:
"""Iteratively try to find the largest batch size for a given model that does not give an out of memory
(OOM) error.
Args:
model: Model to tune.
train_dataloaders: A collection of :class:`torch.utils.data.DataLoader` or a
:class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying training samples.
In the case of multiple dataloaders, please see this :ref:`section <multiple-dataloaders>`.
val_dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples.
dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying val/test/predict
samples used for running tuner on validation/testing/prediction.
datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`.
method: Method to run tuner on. It can be any of ``("fit", "validate", "test", "predict")``.
mode: Search strategy to update the batch size:
- ``'power'``: Keep multiplying the batch size by 2, until we get an OOM error.
- ``'binsearch'``: Initially keep multiplying by 2 and after encountering an OOM error
do a binary search between the last successful batch size and the batch size that failed.
steps_per_trial: number of steps to run with a given batch size.
Ideally 1 should be enough to test if an OOM error occurs,
however in practise a few are needed
init_val: initial batch size to start the search with
max_trials: max number of increases in batch size done before
algorithm is terminated
batch_arg_name: name of the attribute that stores the batch size.
It is expected that the user has provided a model or datamodule that has a hyperparameter
with that name. We will look for this attribute name in the following places
- ``model``
- ``model.hparams``
- ``trainer.datamodule`` (the datamodule passed to the tune method)
"""
_check_tuner_configuration(self.trainer, train_dataloaders, val_dataloaders, dataloaders, method)
batch_size_finder: Callback = BatchSizeFinder(
mode=mode,
steps_per_trial=steps_per_trial,
init_val=init_val,
max_trials=max_trials,
batch_arg_name=batch_arg_name,
)
# do not continue with the loop in case trainer.tuner is used
batch_size_finder._early_exit = True
self.trainer.callbacks = [batch_size_finder] + self.trainer.callbacks
if method == "fit":
self.trainer.fit(model, train_dataloaders, val_dataloaders, datamodule)
elif method == "validate":
self.trainer.validate(model, dataloaders, datamodule=datamodule)
elif method == "test":
self.trainer.test(model, dataloaders, datamodule=datamodule)
elif method == "predict":
self.trainer.predict(model, dataloaders, datamodule=datamodule)
self.trainer.callbacks = [cb for cb in self.trainer.callbacks if cb is not batch_size_finder]
self.trainer.auto_scale_batch_size = False
return batch_size_finder.optimal_batch_size
[docs] def lr_find(
self,
model: "pl.LightningModule",
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None,
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
dataloaders: Optional[EVAL_DATALOADERS] = None,
datamodule: Optional["pl.LightningDataModule"] = None,
method: Literal["fit", "validate", "test", "predict"] = "fit",
min_lr: float = 1e-8,
max_lr: float = 1,
num_training: int = 100,
mode: str = "exponential",
early_stop_threshold: float = 4.0,
update_attr: bool = False,
) -> Optional[_LRFinder]:
"""Enables the user to do a range test of good initial learning rates, to reduce the amount of guesswork in
picking a good starting learning rate.
Args:
model: Model to tune.
train_dataloaders: A collection of :class:`torch.utils.data.DataLoader` or a
:class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying training samples.
In the case of multiple dataloaders, please see this :ref:`section <multiple-dataloaders>`.
val_dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples.
dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying val/test/predict
samples used for running tuner on validation/testing/prediction.
datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`.
min_lr: minimum learning rate to investigate
max_lr: maximum learning rate to investigate
num_training: number of learning rates to test
mode: Search strategy to update learning rate after each batch:
- ``'exponential'``: Increases the learning rate exponentially.
- ``'linear'``: Increases the learning rate linearly.
early_stop_threshold: Threshold for stopping the search. If the
loss at any point is larger than early_stop_threshold*best_loss
then the search is stopped. To disable, set to None.
update_attr: Whether to update the learning rate attribute or not.
Raises:
MisconfigurationException:
If learning rate/lr in ``model`` or ``model.hparams`` isn't overridden when ``auto_lr_find=True``,
or if you are using more than one optimizer.
"""
if method != "fit":
raise MisconfigurationException("method='fit' is an invalid configuration to run lr finder.")
_check_tuner_configuration(self.trainer, train_dataloaders, val_dataloaders, dataloaders, method)
lr_finder_callback: Callback = LearningRateFinder(
min_lr=min_lr,
max_lr=max_lr,
num_training_steps=num_training,
mode=mode,
early_stop_threshold=early_stop_threshold,
update_attr=update_attr,
)
lr_finder_callback._early_exit = True
self.trainer.callbacks = [lr_finder_callback] + self.trainer.callbacks
self.trainer.fit(model, train_dataloaders, val_dataloaders, datamodule)
self.trainer.callbacks = [cb for cb in self.trainer.callbacks if cb is not lr_finder_callback]
self.trainer.auto_lr_find = False
return lr_finder_callback.optimal_lr
def _check_tuner_configuration(
trainer: "pl.Trainer",
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None,
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
dataloaders: Optional[EVAL_DATALOADERS] = None,
method: Literal["fit", "validate", "test", "predict"] = "fit",
) -> None:
supported_methods = ("fit", "validate", "test", "predict")
if method not in supported_methods:
raise ValueError(f"method {method!r} is invalid. Should be one of {supported_methods}.")
if method == "fit":
if dataloaders is not None:
raise MisconfigurationException(
f"In tuner with method={method!r}, `dataloaders` argument should be None,"
" please consider setting `train_dataloaders` and `val_dataloaders` instead."
)
else:
if train_dataloaders is not None or val_dataloaders is not None:
raise MisconfigurationException(
f"In tuner with `method`={method!r}, `train_dataloaders` and `val_dataloaders`"
" arguments should be None, please consider setting `dataloaders` instead."
)
if any(isinstance(cb, (BatchSizeFinder, LearningRateFinder)) for cb in trainer.callbacks):
raise MisconfigurationException(
"Trainer is already configured with a `BatchSizeFinder` callback. Please remove it if you"
" want to use tuner."
)