Shortcuts

Source code for pytorch_lightning.tuner.tuning

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Union

from typing_extensions import Literal, NotRequired, TypedDict

import pytorch_lightning as pl
from pytorch_lightning.callbacks.batch_size_finder import BatchSizeFinder
from pytorch_lightning.callbacks.callback import Callback
from pytorch_lightning.callbacks.lr_finder import LearningRateFinder
from pytorch_lightning.core.datamodule import LightningDataModule
from pytorch_lightning.trainer.states import TrainerStatus
from pytorch_lightning.tuner.lr_finder import _LRFinder
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.types import EVAL_DATALOADERS, TRAIN_DATALOADERS


class _TunerResult(TypedDict):
    lr_find: NotRequired[Optional[_LRFinder]]
    scale_batch_size: NotRequired[Optional[int]]


[docs]class Tuner: """Tuner class to tune your model.""" def __init__(self, trainer: "pl.Trainer") -> None: self.trainer = trainer def on_trainer_init(self, auto_lr_find: Union[str, bool], auto_scale_batch_size: Union[str, bool]) -> None: self.trainer.auto_lr_find = auto_lr_find self.trainer.auto_scale_batch_size = auto_scale_batch_size def _tune( self, model: "pl.LightningModule", train_dataloaders: Optional[Union[TRAIN_DATALOADERS, LightningDataModule]] = None, val_dataloaders: Optional[EVAL_DATALOADERS] = None, dataloaders: Optional[EVAL_DATALOADERS] = None, datamodule: Optional[LightningDataModule] = None, scale_batch_size_kwargs: Optional[Dict[str, Any]] = None, lr_find_kwargs: Optional[Dict[str, Any]] = None, method: Literal["fit", "validate", "test", "predict"] = "fit", ) -> _TunerResult: scale_batch_size_kwargs = scale_batch_size_kwargs or {} lr_find_kwargs = lr_find_kwargs or {} # return a dict instead of a tuple so BC is not broken if a new tuning procedure is added result = _TunerResult() self.trainer.strategy.connect(model) is_tuning = self.trainer.auto_scale_batch_size or self.trainer.auto_lr_find if self.trainer._accelerator_connector.is_distributed and is_tuning: raise MisconfigurationException( "`trainer.tune()` is currently not supported with" f" `Trainer(strategy={self.trainer.strategy.strategy_name!r})`." ) # Run auto batch size scaling if self.trainer.auto_scale_batch_size: if isinstance(self.trainer.auto_scale_batch_size, str): scale_batch_size_kwargs.setdefault("mode", self.trainer.auto_scale_batch_size) result["scale_batch_size"] = self.scale_batch_size( model, train_dataloaders, val_dataloaders, dataloaders, datamodule, method, **scale_batch_size_kwargs ) # Run learning rate finder: if self.trainer.auto_lr_find: self.trainer.state.status = TrainerStatus.RUNNING # TODO: Remove this once LRFinder is converted to a Callback # if a datamodule comes in as the second arg, then fix it for the user if isinstance(train_dataloaders, LightningDataModule): datamodule = train_dataloaders train_dataloaders = None # If you supply a datamodule you can't supply train_dataloader or val_dataloaders if (train_dataloaders is not None or val_dataloaders is not None) and datamodule is not None: raise MisconfigurationException( "You cannot pass `train_dataloader` or `val_dataloaders` to `trainer.tune()`" " if datamodule is already passed." ) # links da_a to the trainer self.trainer._data_connector.attach_data( model, train_dataloaders=train_dataloaders, val_dataloaders=val_dataloaders, datamodule=datamodule ) lr_find_kwargs.setdefault("update_attr", True) result["lr_find"] = self.lr_find( model, train_dataloaders, val_dataloaders, dataloaders, datamodule, method, **lr_find_kwargs ) self.trainer.state.status = TrainerStatus.FINISHED return result def _run(self, *args: Any, **kwargs: Any) -> None: """`_run` wrapper to set the proper state during tuning, as this can be called multiple times.""" self.trainer.state.status = TrainerStatus.RUNNING # last `_run` call might have set it to `FINISHED` self.trainer.training = True self.trainer._run(*args, **kwargs)
[docs] def scale_batch_size( self, model: "pl.LightningModule", train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None, val_dataloaders: Optional[EVAL_DATALOADERS] = None, dataloaders: Optional[EVAL_DATALOADERS] = None, datamodule: Optional["pl.LightningDataModule"] = None, method: Literal["fit", "validate", "test", "predict"] = "fit", mode: str = "power", steps_per_trial: int = 3, init_val: int = 2, max_trials: int = 25, batch_arg_name: str = "batch_size", ) -> Optional[int]: """Iteratively try to find the largest batch size for a given model that does not give an out of memory (OOM) error. Args: model: Model to tune. train_dataloaders: A collection of :class:`torch.utils.data.DataLoader` or a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying training samples. In the case of multiple dataloaders, please see this :ref:`section <multiple-dataloaders>`. val_dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples. dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying val/test/predict samples used for running tuner on validation/testing/prediction. datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`. method: Method to run tuner on. It can be any of ``("fit", "validate", "test", "predict")``. mode: Search strategy to update the batch size: - ``'power'``: Keep multiplying the batch size by 2, until we get an OOM error. - ``'binsearch'``: Initially keep multiplying by 2 and after encountering an OOM error do a binary search between the last successful batch size and the batch size that failed. steps_per_trial: number of steps to run with a given batch size. Ideally 1 should be enough to test if an OOM error occurs, however in practise a few are needed init_val: initial batch size to start the search with max_trials: max number of increases in batch size done before algorithm is terminated batch_arg_name: name of the attribute that stores the batch size. It is expected that the user has provided a model or datamodule that has a hyperparameter with that name. We will look for this attribute name in the following places - ``model`` - ``model.hparams`` - ``trainer.datamodule`` (the datamodule passed to the tune method) """ _check_tuner_configuration(self.trainer, train_dataloaders, val_dataloaders, dataloaders, method) batch_size_finder: Callback = BatchSizeFinder( mode=mode, steps_per_trial=steps_per_trial, init_val=init_val, max_trials=max_trials, batch_arg_name=batch_arg_name, ) # do not continue with the loop in case trainer.tuner is used batch_size_finder._early_exit = True self.trainer.callbacks = [batch_size_finder] + self.trainer.callbacks if method == "fit": self.trainer.fit(model, train_dataloaders, val_dataloaders, datamodule) elif method == "validate": self.trainer.validate(model, dataloaders, datamodule=datamodule) elif method == "test": self.trainer.test(model, dataloaders, datamodule=datamodule) elif method == "predict": self.trainer.predict(model, dataloaders, datamodule=datamodule) self.trainer.callbacks = [cb for cb in self.trainer.callbacks if cb is not batch_size_finder] self.trainer.auto_scale_batch_size = False return batch_size_finder.optimal_batch_size
[docs] def lr_find( self, model: "pl.LightningModule", train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None, val_dataloaders: Optional[EVAL_DATALOADERS] = None, dataloaders: Optional[EVAL_DATALOADERS] = None, datamodule: Optional["pl.LightningDataModule"] = None, method: Literal["fit", "validate", "test", "predict"] = "fit", min_lr: float = 1e-8, max_lr: float = 1, num_training: int = 100, mode: str = "exponential", early_stop_threshold: float = 4.0, update_attr: bool = False, ) -> Optional[_LRFinder]: """Enables the user to do a range test of good initial learning rates, to reduce the amount of guesswork in picking a good starting learning rate. Args: model: Model to tune. train_dataloaders: A collection of :class:`torch.utils.data.DataLoader` or a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying training samples. In the case of multiple dataloaders, please see this :ref:`section <multiple-dataloaders>`. val_dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples. dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying val/test/predict samples used for running tuner on validation/testing/prediction. datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`. min_lr: minimum learning rate to investigate max_lr: maximum learning rate to investigate num_training: number of learning rates to test mode: Search strategy to update learning rate after each batch: - ``'exponential'``: Increases the learning rate exponentially. - ``'linear'``: Increases the learning rate linearly. early_stop_threshold: Threshold for stopping the search. If the loss at any point is larger than early_stop_threshold*best_loss then the search is stopped. To disable, set to None. update_attr: Whether to update the learning rate attribute or not. Raises: MisconfigurationException: If learning rate/lr in ``model`` or ``model.hparams`` isn't overridden when ``auto_lr_find=True``, or if you are using more than one optimizer. """ if method != "fit": raise MisconfigurationException("method='fit' is an invalid configuration to run lr finder.") _check_tuner_configuration(self.trainer, train_dataloaders, val_dataloaders, dataloaders, method) lr_finder_callback: Callback = LearningRateFinder( min_lr=min_lr, max_lr=max_lr, num_training_steps=num_training, mode=mode, early_stop_threshold=early_stop_threshold, update_attr=update_attr, ) lr_finder_callback._early_exit = True self.trainer.callbacks = [lr_finder_callback] + self.trainer.callbacks self.trainer.fit(model, train_dataloaders, val_dataloaders, datamodule) self.trainer.callbacks = [cb for cb in self.trainer.callbacks if cb is not lr_finder_callback] self.trainer.auto_lr_find = False return lr_finder_callback.optimal_lr
def _check_tuner_configuration( trainer: "pl.Trainer", train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None, val_dataloaders: Optional[EVAL_DATALOADERS] = None, dataloaders: Optional[EVAL_DATALOADERS] = None, method: Literal["fit", "validate", "test", "predict"] = "fit", ) -> None: supported_methods = ("fit", "validate", "test", "predict") if method not in supported_methods: raise ValueError(f"method {method!r} is invalid. Should be one of {supported_methods}.") if method == "fit": if dataloaders is not None: raise MisconfigurationException( f"In tuner with method={method!r}, `dataloaders` argument should be None," " please consider setting `train_dataloaders` and `val_dataloaders` instead." ) else: if train_dataloaders is not None or val_dataloaders is not None: raise MisconfigurationException( f"In tuner with `method`={method!r}, `train_dataloaders` and `val_dataloaders`" " arguments should be None, please consider setting `dataloaders` instead." ) if any(isinstance(cb, (BatchSizeFinder, LearningRateFinder)) for cb in trainer.callbacks): raise MisconfigurationException( "Trainer is already configured with a `BatchSizeFinder` callback. Please remove it if you" " want to use tuner." )

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.