Source code for pytorch_lightning.strategies.fully_sharded_native
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import logging
from typing import Any, Dict, Generator, List, Optional, Union
import torch
from torch import Tensor
import pytorch_lightning as pl
from lightning_lite.plugins import CheckpointIO, ClusterEnvironment
from lightning_lite.utilities.distributed import (
_get_default_process_group_backend_for_device,
_init_dist_connection,
_sync_ddp_if_available,
)
from lightning_lite.utilities.distributed import group as _group
from lightning_lite.utilities.optimizer import _optimizers_to_device
from lightning_lite.utilities.seed import reset_seed
from lightning_lite.utilities.types import ProcessGroup, ReduceOp
from pytorch_lightning.overrides.base import _LightningModuleWrapperBase
from pytorch_lightning.plugins.precision import PrecisionPlugin
from pytorch_lightning.plugins.precision.fsdp_native_native_amp import FullyShardedNativeNativeMixedPrecisionPlugin
from pytorch_lightning.strategies.launchers.subprocess_script import _SubprocessScriptLauncher
from pytorch_lightning.strategies.parallel import ParallelStrategy
from pytorch_lightning.strategies.strategy import TBroadcast
from pytorch_lightning.trainer.states import TrainerFn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_12
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.rank_zero import rank_zero_info, rank_zero_only
from pytorch_lightning.utilities.types import STEP_OUTPUT
_distributed_available = torch.distributed.is_available()
_fsdp_available = _TORCH_GREATER_EQUAL_1_12 and _distributed_available
if _fsdp_available:
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel,
MixedPrecision,
)
from torch.distributed.fsdp.wrap import enable_wrap
else:
FullyShardedDataParallel = None # type: ignore[misc,assignment]
MixedPrecision = None # type: ignore[misc,assignment]
BackwardPrefetch = None # type: ignore[misc,assignment]
CPUOffload = None # type: ignore[misc,assignment]
if _distributed_available:
from torch.distributed.distributed_c10d import _get_default_group
log = logging.getLogger(__name__)
[docs]class DDPFullyShardedNativeStrategy(ParallelStrategy):
r"""Strategy for Fully Sharded Data Parallel provided by torch.distributed.
.. warning:: ``DDPFullyShardedNativeStrategy`` is in BETA and subject to change. The interface can
bring breaking changes and new features with the next release of PyTorch.
Fully Sharded Training shards the entire model across all available GPUs, allowing you to scale model
size, whilst using efficient communication to reduce overhead. In practice, this means we can remain
at parity with PyTorch DDP, whilst scaling our model sizes dramatically. The technique is similar
to ZeRO-Stage 3.
For more information `check out <https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api>`__.
Defaults have been set and options have been exposed, but may require configuration
based on your level of memory/speed efficiency. We suggest having a look at
`this tutorial <https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html>`__ for more information.
Arguments:
cpu_offload:
CPU offloading config. Currently, only parameter and gradient CPU
offload is supported. It can be enabled via passing in
``cpu_offload=CPUOffload(offload_params=True)``. Note that this
currently implicitly enables gradient offloading to CPU in order for
params and grads to be on same device to work with optimizer. This
API is subject to change. Default is ``None`` in which case there
will be no offloading.
backward_prefetch:
This is an experimental feature that is subject to change in the
the near future. It allows users to enable two different backward_prefetch
algorithms to help backward communication and computation overlapping.
The pros and cons of each algorithm is explained in the class ``BackwardPrefetch``.
mixed_precision:
Mixed Precision config. By default, Lightning will enable FP16 if ``precision=16``
or BF16 if ``precision=bf16`` unless a config is passed in.
This is only available in PyTorch 1.12 and later.
\**kwargs: Passed to the FSDP context manager which will configure the FSDP class when wrapping modules.
"""
strategy_name = "fsdp_native"
_registered_strategies: List[str] = []
def __init__(
self,
accelerator: Optional["pl.accelerators.Accelerator"] = None,
parallel_devices: Optional[List[torch.device]] = None,
cluster_environment: Optional[ClusterEnvironment] = None,
checkpoint_io: Optional[CheckpointIO] = None,
precision_plugin: Optional[PrecisionPlugin] = None,
process_group_backend: Optional[str] = None,
cpu_offload: Optional[CPUOffload] = None,
backward_prefetch: Optional[BackwardPrefetch] = None,
mixed_precision: Optional[MixedPrecision] = None,
**kwargs: Any,
) -> None:
if not _TORCH_GREATER_EQUAL_1_12:
raise MisconfigurationException(
"`DDPFullyShardedNativeStrategy` is supported from PyTorch v1.12.0 onwards."
)
super().__init__(
accelerator=accelerator,
parallel_devices=parallel_devices,
cluster_environment=cluster_environment,
checkpoint_io=checkpoint_io,
precision_plugin=precision_plugin,
)
self._process_group = None
self.num_nodes = 1
self._process_group_backend = process_group_backend
self.cpu_offload = cpu_offload
self.backward_prefetch = backward_prefetch
self.mixed_precision = mixed_precision
self._rank_0_will_call_children_scripts: bool = False
self.kwargs = kwargs
@property
def root_device(self) -> torch.device:
assert self.parallel_devices is not None
return self.parallel_devices[self.local_rank]
@property
def num_processes(self) -> int:
return len(self.parallel_devices) if self.parallel_devices is not None else 0
@property
def process_group(self) -> Optional[ProcessGroup]:
if self._process_group is None:
# The strategy should have already initilized process group in setup_environment()
self._process_group = _get_default_group()
return self._process_group
@property
def process_group_backend(self) -> Optional[str]:
return self._process_group_backend
@property
def mixed_precision_config(self) -> Optional[MixedPrecision]:
if self.mixed_precision:
return self.mixed_precision
plugin = self.precision_plugin
if isinstance(plugin, FullyShardedNativeNativeMixedPrecisionPlugin):
return plugin.mixed_precision_config
@property
def distributed_sampler_kwargs(self) -> Dict:
return dict(num_replicas=(self.num_nodes * self.num_processes), rank=self.global_rank)
[docs] def setup_environment(self) -> None:
log.detail(f"{self.__class__.__name__}: setting up distributed...")
reset_seed()
# determine which process we are and world size
self.set_world_ranks()
# set warning rank
rank_zero_only.rank = self.global_rank
self._process_group_backend = self._get_process_group_backend()
assert self.cluster_environment is not None
_init_dist_connection(self.cluster_environment, self._process_group_backend)
super().setup_environment()
def _get_process_group_backend(self) -> str:
return self._process_group_backend or _get_default_process_group_backend_for_device(self.root_device)
def set_world_ranks(self) -> None:
if self.cluster_environment is None:
return
self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank)
self.cluster_environment.set_world_size(self.num_nodes * self.num_processes)
rank_zero_only.rank = self.cluster_environment.global_rank()
def _configure_launcher(self) -> None:
assert self.cluster_environment is not None
if not self.cluster_environment.creates_processes_externally:
self._launcher = _SubprocessScriptLauncher(self.cluster_environment, self.num_processes, self.num_nodes)
self._rank_0_will_call_children_scripts = True
def _setup_model(self, model: torch.nn.Module) -> FullyShardedDataParallel:
"""Wraps the model into a
:class:`~torch.distributed.fsdp.fully_sharded_data_parallel.FullyShardedDataParallel` module."""
# If model is already wrapped, we need to avoid sending the `auto_wrap_policy`
assert self.lightning_module is not None
if (
any(isinstance(mod, FullyShardedDataParallel) for mod in self.lightning_module.modules())
and "auto_wrap_policy" in self.kwargs
):
del self.kwargs["auto_wrap_policy"]
log.detail(f"setting up FSDP model with device id: {self.root_device.index}, kwargs: {self.kwargs}")
return FullyShardedDataParallel(
module=model,
process_group=self.process_group,
cpu_offload=self.cpu_offload,
backward_prefetch=self.backward_prefetch,
mixed_precision=self.mixed_precision_config,
device_id=self.root_device.index,
**self.kwargs,
)
[docs] def setup(self, trainer: "pl.Trainer") -> None:
assert self.accelerator is not None
self.accelerator.setup(trainer)
# share ddp pids to all processes
self._rank_0_will_call_children_scripts = self.broadcast(self._rank_0_will_call_children_scripts)
if trainer.state.fn == TrainerFn.FITTING and self._layer_sync:
assert self.model is not None
self.model = self._layer_sync.apply(self.model)
# we set the device so that optimizers can be created with distributed comms.
assert self.lightning_module is not None
self.lightning_module._device = self.root_device
assert isinstance(self.model, pl.LightningModule)
self.model = _LightningModuleWrapperBase(self.model)
if is_overridden("configure_sharded_model", self.lightning_module):
rank_zero_info(
"You have overridden `LightningModule.configure_sharded_model` hook. It will assume that all the layers"
" are already wrapped for sharding and won't wrap the entire model using `FullyShardedDataParallel`."
)
else:
self.model = self._setup_model(self.model)
self.barrier()
self.setup_optimizers(trainer)
_optimizers_to_device(self.optimizers, self.root_device)
self.setup_precision_plugin()
[docs] @contextlib.contextmanager
def model_sharded_context(self) -> Generator:
log.detail(f"{self.__class__.__name__}: entered model_sharded_context.")
with enable_wrap(
wrapper_cls=FullyShardedDataParallel,
process_group=self.process_group,
cpu_offload=self.cpu_offload,
backward_prefetch=self.backward_prefetch,
mixed_precision=self.mixed_precision_config,
device_id=self.root_device.index,
**self.kwargs,
):
yield
[docs] def barrier(self, name: Optional[str] = None) -> None:
if not _distributed_available:
return
if torch.distributed.get_backend() == "nccl":
torch.distributed.barrier(device_ids=self._determine_device_ids())
else:
torch.distributed.barrier()
[docs] def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
obj = [obj]
if self.global_rank != src:
obj = [None] # type: ignore
torch.distributed.broadcast_object_list(obj, src, group=_group.WORLD)
return obj[0]
[docs] def reduce(
self,
tensor: Union[Tensor, Any],
group: Optional[Any] = None,
reduce_op: Optional[Union[ReduceOp, str]] = "mean",
) -> Tensor:
"""Reduces a tensor from several distributed processes to one aggregated tensor.
Args:
tensor: the tensor to sync and reduce
group: the process group to gather results from. Defaults to all processes (world)
reduce_op: the reduction operation. Defaults to 'mean'/'avg'.
Can also be a string 'sum' to calculate the sum during reduction.
Return:
reduced value, except when the input was not a tensor the output remains is unchanged
"""
if isinstance(tensor, Tensor):
tensor = _sync_ddp_if_available(tensor, group, reduce_op=reduce_op)
return tensor
[docs] def training_step(self, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
# we don't need precision context since casting is done by FSDP
# read `mixed_precision` docstring here: https://pytorch.org/docs/stable/fsdp.html
assert self.model is not None
return self.model(*args, **kwargs)
[docs] def validation_step(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]:
assert self.model is not None
return self.model(*args, **kwargs)
[docs] def test_step(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]:
assert self.model is not None
return self.model(*args, **kwargs)
[docs] def predict_step(self, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
assert self.model is not None
return self.model(*args, **kwargs)
def _determine_device_ids(self) -> List[int]:
return [self.root_device.index]
[docs] def teardown(self) -> None:
rank_zero_info(f"{self.__class__.__name__}: tearing down strategy...")
pl_module = self.lightning_module
if (
pl_module is not None
# `self.lightning_module._trainer` can be None if teardown gets called on an exception before
# the trainer gets set on the LightningModule
and pl_module._trainer is not None
and pl_module._trainer.state.fn == TrainerFn.FITTING
and self._layer_sync
):
assert self.model is not None
self.model = self._layer_sync.revert(self.model)
assert self.cluster_environment is not None
assert self.accelerator is not None
self.cluster_environment.teardown()
self.precision_plugin.teardown()
self.accelerator.teardown()
@classmethod
def get_registered_strategies(cls) -> List[str]:
return cls._registered_strategies
@classmethod
def register_strategies(cls, strategy_registry: Dict) -> None:
if _fsdp_available:
strategy_registry.register(
"fsdp_native",
cls,
description="Fully Sharded Data Parallel training from torch.distributed.",
)
cls._registered_strategies.append("fsdp_native")
strategy_registry.register(
"fsdp_native_full_shard_offload",
cls,
description="Native FSDP with Full Sharding and CPU Offloading",
cpu_offload=CPUOffload(offload_params=True),
)
cls._registered_strategies.append("fsdp_native_full_shard_offload")