Source code for pytorch_lightning.strategies.dp
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Union
import torch
from lightning_utilities.core.apply_func import apply_to_collection
from torch import Tensor
from torch.nn import DataParallel, Module
import pytorch_lightning as pl
from lightning_lite.plugins import CheckpointIO
from lightning_lite.utilities.distributed import ReduceOp
from pytorch_lightning.overrides.base import _LightningPrecisionModuleWrapperBase
from pytorch_lightning.overrides.data_parallel import LightningParallelModule
from pytorch_lightning.plugins.precision import PrecisionPlugin
from pytorch_lightning.strategies.parallel import ParallelStrategy
from pytorch_lightning.strategies.strategy import TBroadcast, TReduce
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.types import STEP_OUTPUT
[docs]class DataParallelStrategy(ParallelStrategy):
"""Implements data-parallel training in a single process, i.e., the model gets replicated to each device and
each gets a split of the data."""
strategy_name = "dp"
def __init__(
self,
accelerator: Optional["pl.accelerators.Accelerator"] = None,
parallel_devices: Optional[List[torch.device]] = None,
checkpoint_io: Optional[CheckpointIO] = None,
precision_plugin: Optional[PrecisionPlugin] = None,
):
super().__init__(
accelerator=accelerator,
parallel_devices=parallel_devices,
cluster_environment=None,
checkpoint_io=checkpoint_io,
precision_plugin=precision_plugin,
)
@property
def global_rank(self) -> int:
return 0
@property
def local_rank(self) -> int:
return 0
@property
def node_rank(self) -> int:
return 0
@property
def world_size(self) -> int:
return 1
[docs] def setup(self, trainer: "pl.Trainer") -> None:
# model needs to be moved to the device before it is wrapped
self.model_to_device()
assert isinstance(self.model, (pl.LightningModule, _LightningPrecisionModuleWrapperBase))
self.model = self._setup_model(LightningParallelModule(self.model))
super().setup(trainer)
[docs] def batch_to_device(self, batch: Any, device: Optional[torch.device] = None, dataloader_idx: int = 0) -> Any:
"""Moves the batch to the correct device.
The input and the output is the same type.
Args:
batch: The batch of samples to move to the correct device
device: The target device
dataloader_idx: The index of the dataloader to which the batch belongs.
"""
# DataParallel handles the transfer of batch to the device
return batch
def _setup_model(self, model: Module) -> DataParallel:
"""Wraps the given model into a :class:`~torch.nn.parallel.DataParallel` module."""
return DataParallel(module=model, device_ids=self.parallel_devices)
[docs] def reduce(
self, collection: TReduce, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean"
) -> TReduce:
"""Reduces a collection of tensors from all processes. It can be applied to just a single tensor.
Args:
collection: The collection of tensors to sync and reduce.
group: ignored for DP
reduce_op: ignored for DP
Return:
Reduced tensor values or the same value if it was not or did not contain a tensor.
"""
def mean(t: Tensor) -> Tensor:
original_dtype = t.dtype
return t.float().mean().to(original_dtype)
return apply_to_collection(collection, Tensor, mean)
@property
def root_device(self) -> torch.device:
assert self.parallel_devices is not None
return self.parallel_devices[0]
[docs] def model_to_device(self) -> None:
assert self.model is not None
self.model.to(self.root_device)
[docs] def training_step(self, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
with self.precision_plugin.train_step_context():
assert self.model is not None
return self.model(*args, **kwargs)
[docs] def validation_step(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]:
with self.precision_plugin.val_step_context():
assert self.model is not None
return self.model(*args, **kwargs)
[docs] def test_step(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]:
with self.precision_plugin.test_step_context():
assert self.model is not None
return self.model(*args, **kwargs)
[docs] def predict_step(self, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
with self.precision_plugin.predict_step_context():
assert self.model is not None
return self.model(*args, **kwargs)
def training_step_end(self, output: STEP_OUTPUT) -> STEP_OUTPUT:
if is_overridden("training_step_end", self.lightning_module):
return output
if isinstance(output, dict) and "loss" in output:
output["loss"] = self.reduce(output["loss"])
elif isinstance(output, Tensor):
output = self.reduce(output)
return output
@classmethod
def register_strategies(cls, strategy_registry: Dict) -> None:
strategy_registry.register(
cls.strategy_name,
cls,
description=f"{cls.__class__.__name__}",
)