Shortcuts

Source code for pytorch_lightning.loops.epoch.evaluation_epoch_loop

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
from functools import lru_cache
from typing import Any, Dict, Optional

from torch.utils.data import DataLoader

from pytorch_lightning.loops.loop import Loop
from pytorch_lightning.trainer.progress import BatchProgress
from pytorch_lightning.trainer.states import TrainerFn
from pytorch_lightning.trainer.supporters import CombinedLoader
from pytorch_lightning.utilities.auto_restart import (
    _collect_states_on_rank_zero_over_collection,
    _reload_dataloader_state_dict,
)
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.fetching import AbstractDataFetcher, DataLoaderIterDataFetcher
from pytorch_lightning.utilities.imports import _fault_tolerant_training
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.types import EPOCH_OUTPUT, STEP_OUTPUT


[docs]class EvaluationEpochLoop(Loop): """This is the loop performing the evaluation. It mainly loops over the given dataloader and runs the validation or test step (depending on the trainer's current state). """ def __init__(self) -> None: super().__init__() self.batch_progress = BatchProgress() self._outputs: EPOCH_OUTPUT = [] self._dl_max_batches = 0 self._data_fetcher: Optional[AbstractDataFetcher] = None self._dataloader_state_dict: Dict[str, Any] = {} self._dl_batch_idx = [0] @property def done(self) -> bool: """Returns ``True`` if the current iteration count reaches the number of dataloader batches.""" return self.batch_progress.current.completed >= self._dl_max_batches
[docs] def reset(self) -> None: """Resets the loop's internal state.""" self._dl_max_batches = 0 self._data_fetcher = None self._outputs = [] if not self.restarting: self.batch_progress.reset_on_run() else: self.batch_progress.reset_on_restart() # when restarting, if we are running `validate` or `test` twice, since there's no concept of `max_epochs` we # need to reset the current state when the loop has finished running if self.done and self.trainer.state.fn != TrainerFn.FITTING: self.batch_progress.reset_on_run()
[docs] def on_run_start(self, data_fetcher: AbstractDataFetcher, dl_max_batches: int, kwargs: OrderedDict) -> None: """Adds the passed arguments to the loop's state if necessary. Args: data_fetcher: the current data_fetcher wrapping the dataloader dl_max_batches: maximum number of batches the dataloader can produce kwargs: the kwargs passed down to the hooks. """ self._dl_max_batches = dl_max_batches self._reload_dataloader_state_dict(data_fetcher) # creates the iterator inside the fetcher but returns `self` self._data_fetcher = iter(data_fetcher) # add the previous `fetched` value to properly track `is_last_batch` with no prefetching data_fetcher.fetched += self.batch_progress.current.ready stage = self.trainer.state.stage assert stage is not None stage = stage.dataloader_prefix self._profiler_fetch_action = ( f"[{self.__class__.__name__}].{stage}_dataloader_idx_{kwargs.get('dataloader_idx', 0)}_next" ) data_fetcher._start_profiler = self._on_before_fetch data_fetcher._stop_profiler = self._on_after_fetch
def _on_before_fetch(self) -> None: self.trainer.profiler.start(self._profiler_fetch_action) def _on_after_fetch(self) -> None: self.trainer.profiler.stop(self._profiler_fetch_action)
[docs] def advance( self, data_fetcher: AbstractDataFetcher, dl_max_batches: int, kwargs: OrderedDict, ) -> None: """Calls the evaluation step with the corresponding hooks and updates the logger connector. Args: data_fetcher: iterator over the dataloader dl_max_batches: maximum number of batches the dataloader can produce kwargs: the kwargs passed down to the hooks. Raises: StopIteration: If the current batch is None """ if not isinstance(data_fetcher, DataLoaderIterDataFetcher): batch_idx = self.batch_progress.current.ready batch = next(data_fetcher) else: batch_idx, batch = next(data_fetcher) self.batch_progress.is_last_batch = data_fetcher.done # configure step_kwargs kwargs = self._build_kwargs(kwargs, batch, batch_idx) self.batch_progress.increment_ready() # hook self._on_evaluation_batch_start(**kwargs) self.batch_progress.increment_started() # lightning module methods output = self._evaluation_step(**kwargs) output = self._evaluation_step_end(output) self.batch_progress.increment_processed() # track loss history self._on_evaluation_batch_end(output, **kwargs) self.batch_progress.increment_completed() # log batch metrics if not self.trainer.sanity_checking: dataloader_idx = kwargs.get("dataloader_idx", 0) self.trainer._logger_connector.update_eval_step_metrics(self._dl_batch_idx[dataloader_idx]) self._dl_batch_idx[dataloader_idx] += 1 # track epoch level outputs if self._should_track_batch_outputs_for_epoch_end() and output is not None: self._outputs.append(output) if self.trainer.move_metrics_to_cpu: # the evaluation step output is not moved as they are not considered "metrics" assert self.trainer._results is not None self.trainer._results.cpu() if not self.batch_progress.is_last_batch: # if fault tolerant is enabled and process has been notified, exit. self.trainer._exit_gracefully_on_signal()
[docs] def on_run_end(self) -> EPOCH_OUTPUT: """Returns the outputs of the whole run.""" outputs, self._outputs = self._outputs, [] # free memory self._data_fetcher = None return outputs
[docs] def teardown(self) -> None: # in case the model changes self._should_track_batch_outputs_for_epoch_end.cache_clear()
[docs] def on_save_checkpoint(self) -> Dict: state_dict = super().on_save_checkpoint() trainer = self._trainer if ( trainer is not None and trainer.state._fault_tolerant_mode.is_enabled and self._data_fetcher is not None and not self._num_completed_batches_reached() # did not finish and self.batch_progress.current.ready # did start ): state = CombinedLoader._state_dict_fn(self._data_fetcher.dataloader_iter, self._has_completed()) if state: state_dict["dataloader_state_dict"] = _collect_states_on_rank_zero_over_collection(state) return state_dict
[docs] def on_load_checkpoint(self, state_dict: Dict) -> None: # cache the dataloader state dict until the dataloader objects are available # dataset states are collected across all ranks dataloader_state_dict = state_dict.get("dataloader_state_dict", None) if not _fault_tolerant_training() or not dataloader_state_dict: return self._dataloader_state_dict = dataloader_state_dict[self.trainer.global_rank]
def _reload_dataloader_state_dict(self, data_fetcher: AbstractDataFetcher) -> None: if self.trainer.sanity_checking or not self._dataloader_state_dict: return dataloader = data_fetcher.dataloader if isinstance(dataloader, CombinedLoader): raise MisconfigurationException( "Reloading support hasn't been implemented for `CombinedLoader`. You can request it by opening an issue" " in `https://github.com/Lightning-AI/lightning/issues`." ) assert isinstance(dataloader, DataLoader) _reload_dataloader_state_dict(dataloader, self._dataloader_state_dict) self._dataloader_state_dict = {} def _num_completed_batches_reached(self) -> bool: epoch_finished_on_completed = self.batch_progress.current.completed == self._dl_max_batches dataloader_consumed_successfully = self.batch_progress.is_last_batch and self._has_completed() return epoch_finished_on_completed or dataloader_consumed_successfully def _has_completed(self) -> bool: return self.batch_progress.current.ready == self.batch_progress.current.completed def _evaluation_step(self, **kwargs: Any) -> Optional[STEP_OUTPUT]: """The evaluation step (validation_step or test_step depending on the trainer's state). Args: batch: The current batch to run through the step. batch_idx: The index of the current batch dataloader_idx: the index of the dataloader producing the current batch Returns: the outputs of the step """ hook_name = "test_step" if self.trainer.testing else "validation_step" output = self.trainer._call_strategy_hook(hook_name, *kwargs.values()) return output def _evaluation_step_end(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]: """Calls the `{validation/test}_step_end` hook.""" hook_name = "test_step_end" if self.trainer.testing else "validation_step_end" model_output = self.trainer._call_lightning_module_hook(hook_name, *args, **kwargs) strategy_output = self.trainer._call_strategy_hook(hook_name, *args, **kwargs) output = strategy_output if model_output is None else model_output return output def _on_evaluation_batch_start(self, **kwargs: Any) -> None: """Calls the ``on_{validation/test}_batch_start`` hook. Args: batch: The current batch to run through the step batch_idx: The index of the current batch dataloader_idx: The index of the dataloader producing the current batch Raises: AssertionError: If the number of dataloaders is None (has not yet been set). """ self.trainer._logger_connector.on_batch_start(**kwargs) kwargs.setdefault("dataloader_idx", 0) # TODO: the argument should be keyword for these hook_name = "on_test_batch_start" if self.trainer.testing else "on_validation_batch_start" self.trainer._call_callback_hooks(hook_name, *kwargs.values()) self.trainer._call_lightning_module_hook(hook_name, *kwargs.values()) def _on_evaluation_batch_end(self, output: Optional[STEP_OUTPUT], **kwargs: Any) -> None: """The ``on_{validation/test}_batch_end`` hook. Args: output: The output of the performed step batch: The input batch for the step batch_idx: The index of the current batch dataloader_idx: Index of the dataloader producing the current batch """ kwargs.setdefault("dataloader_idx", 0) # TODO: the argument should be keyword for these hook_name = "on_test_batch_end" if self.trainer.testing else "on_validation_batch_end" self.trainer._call_callback_hooks(hook_name, output, *kwargs.values()) self.trainer._call_lightning_module_hook(hook_name, output, *kwargs.values()) self.trainer._logger_connector.on_batch_end() def _build_kwargs(self, kwargs: OrderedDict, batch: Any, batch_idx: int) -> OrderedDict: """Helper method to build the arguments for the current step. Args: kwargs: The kwargs passed down to the hooks. batch: The current batch to run through the step. Returns: The kwargs passed down to the hooks. """ kwargs.update(batch=batch, batch_idx=batch_idx) # `dataloader_idx` should be last so we need to push these to the front kwargs.move_to_end("batch_idx", last=False) kwargs.move_to_end("batch", last=False) return kwargs @lru_cache(1) def _should_track_batch_outputs_for_epoch_end(self) -> bool: """Whether the batch outputs should be stored for later usage.""" model = self.trainer.lightning_module if self.trainer.testing: return is_overridden("test_epoch_end", model) return is_overridden("validation_epoch_end", model) def _reset_dl_batch_idx(self, num_dataloaders: int) -> None: self._dl_batch_idx = [0] * num_dataloaders

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.