Source code for pytorch_lightning.accelerators.hpu
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Union
import torch
from lightning_lite.utilities.types import _DEVICE
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _HPU_AVAILABLE
from pytorch_lightning.utilities.rank_zero import rank_zero_debug
if _HPU_AVAILABLE:
import habana_frameworks.torch.hpu as torch_hpu
[docs]class HPUAccelerator(Accelerator):
"""Accelerator for HPU devices."""
[docs] def setup_device(self, device: torch.device) -> None:
"""
Raises:
MisconfigurationException:
If the selected device is not HPU.
"""
if device.type != "hpu":
raise MisconfigurationException(f"Device should be HPU, got {device} instead.")
[docs] def get_device_stats(self, device: _DEVICE) -> Dict[str, Any]:
"""Returns a map of the following metrics with their values:
- Limit: amount of total memory on HPU device.
- InUse: amount of allocated memory at any instance.
- MaxInUse: amount of total active memory allocated.
- NumAllocs: number of allocations.
- NumFrees: number of freed chunks.
- ActiveAllocs: number of active allocations.
- MaxAllocSize: maximum allocated size.
- TotalSystemAllocs: total number of system allocations.
- TotalSystemFrees: total number of system frees.
- TotalActiveAllocs: total number of active allocations.
"""
try:
return torch_hpu.hpu.memory_stats(device)
except (AttributeError, NameError):
rank_zero_debug("HPU `get_device_stats` failed")
return {}
[docs] @staticmethod
def parse_devices(devices: Union[int, str, List[int]]) -> Optional[int]:
"""Accelerator device parsing logic."""
return _parse_hpus(devices)
[docs] @staticmethod
def get_parallel_devices(devices: int) -> List[torch.device]:
"""Gets parallel devices for the Accelerator."""
return [torch.device("hpu")] * devices
[docs] @staticmethod
def auto_device_count() -> int:
"""Returns the number of HPU devices when the devices is set to auto."""
try:
return torch_hpu.device_count()
except (AttributeError, NameError):
rank_zero_debug("HPU `auto_device_count` failed, returning default count of 8.")
return 8
[docs] @staticmethod
def is_available() -> bool:
"""Returns a bool indicating if HPU is currently available."""
try:
return torch_hpu.is_available()
except (AttributeError, NameError):
return False
[docs] @staticmethod
def get_device_name() -> str:
"""Returns the name of the HPU device."""
try:
return torch_hpu.get_device_name()
except (AttributeError, NameError):
return ""
@classmethod
def register_accelerators(cls, accelerator_registry: Dict) -> None:
accelerator_registry.register(
"hpu",
cls,
description=cls.__class__.__name__,
)
def _parse_hpus(devices: Optional[Union[int, str, List[int]]]) -> Optional[int]:
"""
Parses the hpus given in the format as accepted by the
:class:`~pytorch_lightning.trainer.Trainer` for the `devices` flag.
Args:
devices: An integer that indicates the number of Gaudi devices to be used
Returns:
Either an integer or ``None`` if no devices were requested
Raises:
MisconfigurationException:
If devices aren't of type `int` or `str`
"""
if devices is not None and not isinstance(devices, (int, str)):
raise MisconfigurationException("`devices` for `HPUAccelerator` must be int, string or None.")
return int(devices) if isinstance(devices, str) else devices