argparse¶
Functions
Extends existing argparse by default attributes for |
|
Create an instance from CLI arguments. |
|
Scans the class signature and returns argument names, types and default values. |
|
Parse CLI arguments, required for custom bool types. |
|
Parse environment arguments if they are defined. |
Classes
Utilities for Argument Parsing within Lightning Components.
- pytorch_lightning.utilities.argparse.add_argparse_args(cls, parent_parser, *, use_argument_group=True)[source]¶
Extends existing argparse by default attributes for
cls
.- Parameters:
parent_parser¶ (
ArgumentParser
) – The custom cli arguments parser, which will be extended by the class’s default arguments.use_argument_group¶ (
bool
) – By default, this is True, and usesadd_argument_group
to add a new group. If False, this will use old behavior.
- Return type:
Union
[_ArgumentGroup
,ArgumentParser
]- Returns:
If use_argument_group is True, returns
parent_parser
to keep old workflows. If False, will return the new ArgumentParser object.
Only arguments of the allowed types (str, float, int, bool) will extend the
parent_parser
.- Raises:
RuntimeError – If
parent_parser
is not anArgumentParser
instance
Examples
>>> # Option 1: Default usage. >>> import argparse >>> from pytorch_lightning import Trainer >>> parser = argparse.ArgumentParser() >>> parser = Trainer.add_argparse_args(parser) >>> args = parser.parse_args([])
>>> # Option 2: Disable use_argument_group (old behavior). >>> import argparse >>> from pytorch_lightning import Trainer >>> parser = argparse.ArgumentParser() >>> parser = Trainer.add_argparse_args(parser, use_argument_group=False) >>> args = parser.parse_args([])
- pytorch_lightning.utilities.argparse.from_argparse_args(cls, args, **kwargs)[source]¶
Create an instance from CLI arguments. Eventually use variables from OS environment which are defined as
"PL_<CLASS-NAME>_<CLASS_ARUMENT_NAME>"
.- Parameters:
cls¶ (
Type
[ParseArgparserDataType
]) – Lightning classargs¶ (
Union
[Namespace
,ArgumentParser
]) – The parser or namespace to take arguments from. Only known arguments will be parsed and passed to theTrainer
.**kwargs¶ – Additional keyword arguments that may override ones in the parser or namespace. These must be valid Trainer arguments.
Examples
>>> from pytorch_lightning import Trainer >>> parser = ArgumentParser(add_help=False) >>> parser = Trainer.add_argparse_args(parser) >>> parser.add_argument('--my_custom_arg', default='something') >>> args = Trainer.parse_argparser(parser.parse_args("")) >>> trainer = Trainer.from_argparse_args(args, logger=False)
- Return type:
- pytorch_lightning.utilities.argparse.get_init_arguments_and_types(cls)[source]¶
Scans the class signature and returns argument names, types and default values.
- Returns:
(argument name, set with argument types, argument default value).
- Return type:
List with tuples of 3 values
Examples
>>> from pytorch_lightning import Trainer >>> args = get_init_arguments_and_types(Trainer)
- pytorch_lightning.utilities.argparse.parse_argparser(cls, arg_parser)[source]¶
Parse CLI arguments, required for custom bool types.
- Return type:
- pytorch_lightning.utilities.argparse.parse_env_variables(cls, template='PL_%(cls_name)s_%(cls_argument)s')[source]¶
Parse environment arguments if they are defined.
Examples
>>> from pytorch_lightning import Trainer >>> parse_env_variables(Trainer) Namespace() >>> import os >>> os.environ["PL_TRAINER_GPUS"] = '42' >>> os.environ["PL_TRAINER_BLABLABLA"] = '1.23' >>> parse_env_variables(Trainer) Namespace(gpus=42) >>> del os.environ["PL_TRAINER_GPUS"]
- Return type: