• Docs >
  • How to Organize PyTorch Into Lightning
Shortcuts

How to Organize PyTorch Into Lightning

To enable your code to work with Lightning, perform the following to organize PyTorch into Lightning.


1. Keep you Computational Code

Keep your regular nn.Module architecture

import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F


class LitModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.layer_1 = nn.Linear(28 * 28, 128)
        self.layer_2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(x.size(0), -1)
        x = self.layer_1(x)
        x = F.relu(x)
        x = self.layer_2(x)
        return x

2. Configure Training Logic

In the training_step of the LightningModule configure how your training routine behaves with a batch of training data:

class LitModel(pl.LightningModule):
    def __init__(self, encoder):
        super().__init__()
        self.encoder = encoder

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.encoder(x)
        loss = F.cross_entropy(y_hat, y)
        return loss

Note

If you need to fully own the training loop for complicated legacy projects, check out Own your loop.


3. Move Optimizer(s) and LR Scheduler(s)

Move your optimizers to the configure_optimizers() hook.

class LitModel(pl.LightningModule):
    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.encoder.parameters(), lr=1e-3)
        lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
        return [optimizer], [lr_scheduler]

4. Organize Validation Logic (optional)

If you need a validation loop, configure how your validation routine behaves with a batch of validation data:

class LitModel(pl.LightningModule):
    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.encoder(x)
        val_loss = F.cross_entropy(y_hat, y)
        self.log("val_loss", val_loss)

Tip

trainer.validate() loads the best checkpoint automatically by default if checkpointing was enabled during fitting.


5. Organize Testing Logic (optional)

If you need a test loop, configure how your testing routine behaves with a batch of test data:

class LitModel(pl.LightningModule):
    def test_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.encoder(x)
        test_loss = F.cross_entropy(y_hat, y)
        self.log("test_loss", test_loss)

6. Configure Prediction Logic (optional)

If you need a prediction loop, configure how your prediction routine behaves with a batch of test data:

class LitModel(LightningModule):
    def predict_step(self, batch, batch_idx):
        x, y = batch
        pred = self.encoder(x)
        return pred

7. Remove any .cuda() or .to(device) Calls

Your LightningModule can automatically run on any hardware!

If you have any explicit calls to .cuda() or .to(device), you can remove them since Lightning makes sure that the data coming from DataLoader and all the Module instances initialized inside LightningModule.__init__ are moved to the respective devices automatically. If you still need to access the current device, you can use self.device anywhere in your LightningModule except in the __init__ and setup methods.

class LitModel(LightningModule):
    def training_step(self, batch, batch_idx):
        z = torch.randn(4, 5, device=self.device)
        ...

Hint: If you are initializing a Tensor within the LightningModule.__init__ method and want it to be moved to the device automatically you should call register_buffer() to register it as a parameter.

class LitModel(LightningModule):
    def __init__(self):
        super().__init__()
        self.register_buffer("running_mean", torch.zeros(num_features))

8. Use your own data

Regular PyTorch DataLoaders work with Lightning. For more modular and scalable datasets, check out LightningDataModule.


Good to know

Additionally, you can run only the validation loop using validate() method.

model = LitModel()
trainer.validate(model)

Note

model.eval() and torch.no_grad() are called automatically for validation.

The test loop isn’t used within fit(), therefore, you would need to explicitly call test().

model = LitModel()
trainer.test(model)

Note

model.eval() and torch.no_grad() are called automatically for testing.

Tip

trainer.test() loads the best checkpoint automatically by default if checkpointing is enabled.

The predict loop will not be used until you call predict().

model = LitModel()
trainer.predict(model)

Note

model.eval() and torch.no_grad() are called automatically for testing.

Tip

trainer.predict() loads the best checkpoint automatically by default if checkpointing is enabled.