• Docs >
  • Fine-Tuning Scheduler
Shortcuts

Fine-Tuning Scheduler

  • Author: Dan Dale

  • License: CC BY-SA

  • Generated: 2022-08-15T09:28:47.774177

This notebook introduces the Fine-Tuning Scheduler extension and demonstrates the use of it to fine-tune a small foundational model on the RTE task of SuperGLUE with iterative early-stopping defined according to a user-specified schedule. It uses Hugging Face’s datasets and transformers libraries to retrieve the relevant benchmark data and foundational model weights. The required dependencies are installed via the finetuning-scheduler [examples] extra.


Open in Open In Colab

Give us a ⭐ on Github | Check out the documentation | Join us on Slack

Setup

This notebook requires some packages besides pytorch-lightning.

[1]:
! pip install --quiet "torch>=1.8" "ipython[notebook]" "setuptools==59.5.0" "pytorch-lightning>=1.4" "finetuning-scheduler[examples]>=0.2.0" "torchmetrics>=0.7"

Scheduled Fine-Tuning with the Fine-Tuning Scheduler Extension

Fine-Tuning Scheduler logo

The Fine-Tuning Scheduler extension accelerates and enhances model experimentation with flexible fine-tuning schedules.

Training with the extension is simple and confers a host of benefits:

  • it dramatically increases fine-tuning flexibility

  • expedites and facilitates exploration of model tuning dynamics

  • enables marginal performance improvements of fine-tuned models

Setup is straightforward, just install from PyPI! Since this notebook-based example requires a few additional packages (e.g. transformers, sentencepiece), we installed the finetuning-scheduler package with the [examples] extra above. Once the finetuning-scheduler package is installed, the FinetuningScheduler callback is available for use with PyTorch Lightning. For additional installation options, please see the Fine-Tuning Scheduler README.

Fundamentally, Fine-Tuning Scheduler enables scheduled, multi-phase, fine-tuning of foundational models. Gradual unfreezing (i.e. thawing) can help maximize foundational model knowledge retention while allowing (typically upper layers of) the model to optimally adapt to new tasks during transfer learning 1, 2, 3

The FinetuningScheduler callback orchestrates the gradual unfreezing of models via a fine-tuning schedule that is either implicitly generated (the default) or explicitly provided by the user (more computationally efficient). Fine-tuning phase transitions are driven by FTSEarlyStopping criteria (a multi-phase extension of EarlyStopping packaged with FinetuningScheduler), user-specified epoch transitions or a composition of the two (the default mode). A FinetuningScheduler training session completes when the final phase of the schedule has its stopping criteria met. See the early stopping documentation for more details on that callback’s configuration.

FinetuningScheduler explicit loss animation

Basic Usage

If no fine-tuning schedule is provided by the user, FinetuningScheduler will generate a default schedule and proceed to fine-tune according to the generated schedule, using default FTSEarlyStopping and FTSCheckpoint callbacks with monitor=val_loss.

from pytorch_lightning import Trainer
from finetuning_scheduler import FinetuningScheduler
trainer = Trainer(callbacks=[FinetuningScheduler()])

The Default Fine-Tuning Schedule

Schedule definition is facilitated via the gen_ft_schedule method which dumps a default fine-tuning schedule (by default using a naive, 2-parameters per level heuristic) which can be adjusted as desired by the user and/or subsequently passed to the callback. Using the default/implicitly generated schedule will likely be less computationally efficient than a user-defined fine-tuning schedule but is useful for exploring a model’s fine-tuning behavior and can serve as a good baseline for subsequent explicit schedule refinement. While the current version of FinetuningScheduler only supports single optimizer and (optional) lr_scheduler configurations, per-phase maximum learning rates can be set as demonstrated in the next section.

Specifying a Fine-Tuning Schedule

To specify a fine-tuning schedule, it’s convenient to first generate the default schedule and then alter the thawed/unfrozen parameter groups associated with each fine-tuning phase as desired. Fine-tuning phases are zero-indexed and executed in ascending order.

  1. First, generate the default schedule to Trainer.log_dir. It will be named after your LightningModule subclass with the suffix _ft_schedule.yaml.

from pytorch_lightning import Trainer
from finetuning_scheduler import FinetuningScheduler
trainer = Trainer(callbacks=[FinetuningScheduler(gen_ft_sched_only=True)])
  1. Alter the schedule as desired.

side_by_side_yaml

  1. Once the fine-tuning schedule has been altered as desired, pass it to FinetuningScheduler to commence scheduled training:

from pytorch_lightning import Trainer
from finetuning_scheduler import FinetuningScheduler

trainer = Trainer(callbacks=[FinetuningScheduler(ft_schedule="/path/to/my/schedule/my_schedule.yaml")])

Early-Stopping and Epoch-Driven Phase Transition Criteria

By default, FTSEarlyStopping and epoch-driven transition criteria are composed. If a max_transition_epoch is specified for a given phase, the next fine-tuning phase will begin at that epoch unless FTSEarlyStopping criteria are met first. If FinetuningScheduler.epoch_transitions_only is True, FTSEarlyStopping will not be used and transitions will be exclusively epoch-driven.

Tip: Use of regex expressions can be convenient for specifying more complex schedules. Also, a per-phase base maximum lr can be specified:

emphasized_yaml

The end-to-end example in this notebook (Scheduled Fine-Tuning For SuperGLUE) uses FinetuningScheduler in explicit mode to fine-tune a small foundational model on the RTE task of SuperGLUE. Please see the official Fine-Tuning Scheduler documentation if you are interested in a similar CLI-based example using the LightningCLI.

Resuming Scheduled Fine-Tuning Training Sessions

Resumption of scheduled fine-tuning training is identical to the continuation of other training sessions with the caveat that the provided checkpoint must have been saved by a FinetuningScheduler session. FinetuningScheduler uses FTSCheckpoint (an extension of ModelCheckpoint) to maintain schedule state with special metadata.

from pytorch_lightning import Trainer
from finetuning_scheduler import FinetuningScheduler
trainer = Trainer(callbacks=[FinetuningScheduler()])
trainer.fit(..., ckpt_path="some/path/to/my_checkpoint.ckpt")

Training will resume at the depth/level of the provided checkpoint according to the specified schedule. Schedules can be altered between training sessions but schedule compatibility is left to the user for maximal flexibility. If executing a user-defined schedule, typically the same schedule should be provided for the original and resumed training sessions.

By default (FinetuningScheduler.restore_best is True), FinetuningScheduler will attempt to restore the best available checkpoint before fine-tuning depth transitions.

trainer = Trainer(callbacks=[FinetuningScheduler()])
trainer.fit(..., ckpt_path="some/path/to/my_kth_best_checkpoint.ckpt")

Note that similar to the behavior of ModelCheckpoint, (specifically this PR), when resuming training with a different FTSCheckpoint dirpath from the provided checkpoint, the new training session’s checkpoint state will be re-initialized at the resumption depth with the provided checkpoint being set as the best checkpoint.

Note: Currently, FinetuningScheduler supports the following strategy types:

  • DP

  • DDP

  • DDP_SPAWN

  • DDP_SHARDED

  • DDP_SHARDED_SPAWN

Custom or officially unsupported strategies can be used by setting FinetuningScheduler.allow_untested to True. Note that most currently unsupported strategies are so because they require varying degrees of modification to be compatible (e.g. deepspeed requires an add_param_group method, tpu_spawn an override of the current broadcast method to include python objects)

Scheduled Fine-Tuning For SuperGLUE

The following example demonstrates the use of FinetuningScheduler to fine-tune a small foundational model on the RTE task of SuperGLUE. Iterative early-stopping will be applied according to a user-specified schedule.

[2]:
import os
import warnings
from datetime import datetime
from typing import Any, Dict, List, Optional

from packaging.version import Version

import sentencepiece as sp  # noqa: F401 # isort: split
import datasets
import pytorch_lightning as pl
import torch
from datasets import logging as datasets_logging
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
from pytorch_lightning.utilities import rank_zero_warn
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from torch.utils.data import DataLoader
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
from transformers import logging as transformers_logging
from transformers.tokenization_utils_base import BatchEncoding

if Version(torch.__version__) == Version("1.12.0") or torch.__version__.startswith("1.12.0"):
    # we need to use a patched version of AdamW to fix https://github.com/pytorch/pytorch/issues/80809
    # and allow examples to succeed with torch 1.12.0 (this torch bug is fixed in 1.12.1)
    from fts_examples.patched_adamw import AdamW
else:
    from torch.optim.adamw import AdamW
WARNING:root:Bagua cannot detect bundled NCCL library, Bagua will try to use system NCCL instead. If you encounter any error, please run `import bagua_core; bagua_core.install_deps()` or the `bagua_install_deps.py` script to install bundled libraries.
[3]:
# Import the `FinetuningScheduler` PyTorch Lightning extension module we want to use. This will import all necessary callbacks.
import finetuning_scheduler as fts  # isort: split

# set notebook-level variables
TASK_NUM_LABELS = {"boolq": 2, "rte": 2}
DEFAULT_TASK = "rte"

# reduce hf logging verbosity to focus on tutorial-relevant code/messages
for hflogger in [transformers_logging, datasets_logging]:
    hflogger.set_verbosity_error()
# ignore warnings related tokenizers_parallelism/DataLoader parallelism trade-off and
# expected logging behavior
for warnf in [
    r".*does not have many workers.*",
    r".*The number of training samples.*",
    r".*converting to a fast.*",
    r".*number of training batches.*",
]:
    warnings.filterwarnings("ignore", warnf)
[4]:
class RteBoolqDataModule(pl.LightningDataModule):
    """A ``LightningDataModule`` designed for both the RTE or BoolQ SuperGLUE Hugging Face datasets."""

    TASK_TEXT_FIELD_MAP = {"rte": ("premise", "hypothesis"), "boolq": ("question", "passage")}
    LOADER_COLUMNS = (
        "datasets_idx",
        "input_ids",
        "token_type_ids",
        "attention_mask",
        "start_positions",
        "end_positions",
        "labels",
    )

    def __init__(
        self,
        model_name_or_path: str,
        task_name: str = DEFAULT_TASK,
        max_seq_length: int = 128,
        train_batch_size: int = 16,
        eval_batch_size: int = 16,
        tokenizers_parallelism: bool = True,
        **dataloader_kwargs: Any,
    ):
        r"""Initialize the ``LightningDataModule`` designed for both the RTE or BoolQ SuperGLUE Hugging Face
        datasets.

        Args:
            model_name_or_path (str):
                Can be either:
                    - A string, the ``model id`` of a pretrained model hosted inside a model repo on huggingface.co.
                        Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                        a user or organization name, like ``dbmdz/bert-base-german-cased``.
                    - A path to a ``directory`` containing model weights saved using
                        :meth:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
            task_name (str, optional): Name of the SuperGLUE task to execute. This module supports 'rte' or 'boolq'.
                Defaults to DEFAULT_TASK which is 'rte'.
            max_seq_length (int, optional): Length to which we will pad sequences or truncate input. Defaults to 128.
            train_batch_size (int, optional): Training batch size. Defaults to 16.
            eval_batch_size (int, optional): Batch size to use for validation and testing splits. Defaults to 16.
            tokenizers_parallelism (bool, optional): Whether to use parallelism in the tokenizer. Defaults to True.
            \**dataloader_kwargs: Arguments passed when initializing the dataloader
        """
        super().__init__()
        task_name = task_name if task_name in TASK_NUM_LABELS.keys() else DEFAULT_TASK
        self.text_fields = self.TASK_TEXT_FIELD_MAP[task_name]
        self.dataloader_kwargs = {
            "num_workers": dataloader_kwargs.get("num_workers", 0),
            "pin_memory": dataloader_kwargs.get("pin_memory", False),
        }
        self.save_hyperparameters()
        os.environ["TOKENIZERS_PARALLELISM"] = "true" if self.hparams.tokenizers_parallelism else "false"
        self.tokenizer = AutoTokenizer.from_pretrained(
            self.hparams.model_name_or_path, use_fast=True, local_files_only=False
        )

    def prepare_data(self):
        """Load the SuperGLUE dataset."""
        # N.B. PL calls prepare_data from a single process (rank 0) so do not use it to assign
        # state (e.g. self.x=y)
        datasets.load_dataset("super_glue", self.hparams.task_name)

    def setup(self, stage):
        """Setup our dataset splits for training/validation."""
        self.dataset = datasets.load_dataset("super_glue", self.hparams.task_name)
        for split in self.dataset.keys():
            self.dataset[split] = self.dataset[split].map(
                self._convert_to_features, batched=True, remove_columns=["label"]
            )
            self.columns = [c for c in self.dataset[split].column_names if c in self.LOADER_COLUMNS]
            self.dataset[split].set_format(type="torch", columns=self.columns)

        self.eval_splits = [x for x in self.dataset.keys() if "validation" in x]

    def train_dataloader(self):
        return DataLoader(self.dataset["train"], batch_size=self.hparams.train_batch_size, **self.dataloader_kwargs)

    def val_dataloader(self):
        return DataLoader(self.dataset["validation"], batch_size=self.hparams.eval_batch_size, **self.dataloader_kwargs)

    def _convert_to_features(self, example_batch: datasets.arrow_dataset.Batch) -> BatchEncoding:
        """Convert raw text examples to a :class:`~transformers.tokenization_utils_base.BatchEncoding` container
        (derived from python dict) of features that includes helpful methods for translating between word/character
        space and token space.

        Args:
            example_batch ([type]): The set of examples to convert to token space.

        Returns:
            ``BatchEncoding``: A batch of encoded examples (note default tokenizer batch_size=1000)
        """
        text_pairs = list(zip(example_batch[self.text_fields[0]], example_batch[self.text_fields[1]]))
        # Tokenize the text/text pairs
        features = self.tokenizer.batch_encode_plus(
            text_pairs, max_length=self.hparams.max_seq_length, padding="longest", truncation=True
        )
        # Rename label to labels to make it easier to pass to model forward
        features["labels"] = example_batch["label"]
        return features
[5]:
class RteBoolqModule(pl.LightningModule):
    """A ``LightningModule`` that can be used to fine-tune a foundational model on either the RTE or BoolQ
    SuperGLUE tasks using Hugging Face implementations of a given model and the `SuperGLUE Hugging Face dataset."""

    def __init__(
        self,
        model_name_or_path: str,
        optimizer_init: Dict[str, Any],
        lr_scheduler_init: Dict[str, Any],
        model_cfg: Optional[Dict[str, Any]] = None,
        task_name: str = DEFAULT_TASK,
        experiment_tag: str = "default",
    ):
        """
        Args:
            model_name_or_path (str): Path to pretrained model or identifier from https://huggingface.co/models
            optimizer_init (Dict[str, Any]): The desired optimizer configuration.
            lr_scheduler_init (Dict[str, Any]): The desired learning rate scheduler config
            model_cfg (Optional[Dict[str, Any]], optional): Defines overrides of the default model config. Defaults to
                ``None``.
            task_name (str, optional): The SuperGLUE task to execute, one of ``'rte'``, ``'boolq'``. Defaults to "rte".
            experiment_tag (str, optional): The tag to use for the experiment and tensorboard logs. Defaults to
                "default".
        """
        super().__init__()
        if task_name not in TASK_NUM_LABELS.keys():
            rank_zero_warn(f"Invalid task_name {task_name!r}. Proceeding with the default task: {DEFAULT_TASK!r}")
            task_name = DEFAULT_TASK
        self.num_labels = TASK_NUM_LABELS[task_name]
        self.model_cfg = model_cfg or {}
        conf = AutoConfig.from_pretrained(model_name_or_path, num_labels=self.num_labels, local_files_only=False)
        self.model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, config=conf)
        self.model.config.update(self.model_cfg)  # apply model config overrides
        self.init_hparams = {
            "optimizer_init": optimizer_init,
            "lr_scheduler_init": lr_scheduler_init,
            "model_config": self.model.config,
            "model_name_or_path": model_name_or_path,
            "task_name": task_name,
            "experiment_id": f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{experiment_tag}",
        }
        self.save_hyperparameters(self.init_hparams)
        self.metric = datasets.load_metric(
            "super_glue", self.hparams.task_name, experiment_id=self.hparams.experiment_id
        )
        self.no_decay = ["bias", "LayerNorm.weight"]

    @property
    def finetuningscheduler_callback(self) -> fts.FinetuningScheduler:
        fts_callback = [c for c in self.trainer.callbacks if isinstance(c, fts.FinetuningScheduler)]
        return fts_callback[0] if fts_callback else None

    def forward(self, **inputs):
        return self.model(**inputs)

    def training_step(self, batch, batch_idx):
        outputs = self(**batch)
        loss = outputs[0]
        self.log("train_loss", loss)
        return loss

    def training_epoch_end(self, outputs: List[Any]) -> None:
        if self.finetuningscheduler_callback:
            self.log("finetuning_schedule_depth", float(self.finetuningscheduler_callback.curr_depth))

    def validation_step(self, batch, batch_idx, dataloader_idx=0):
        outputs = self(**batch)
        val_loss, logits = outputs[:2]
        if self.num_labels >= 1:
            preds = torch.argmax(logits, axis=1)
        elif self.num_labels == 1:
            preds = logits.squeeze()
        labels = batch["labels"]
        self.log("val_loss", val_loss, prog_bar=True)
        metric_dict = self.metric.compute(predictions=preds, references=labels)
        self.log_dict(metric_dict, prog_bar=True)

    def _init_param_groups(self) -> List[Dict]:
        """Initialize the parameter groups. Used to ensure weight_decay is not applied to our specified bias
        parameters when we initialize the optimizer.

        Returns:
            List[Dict]: A list of parameter group dictionaries.
        """
        return [
            {
                "params": [
                    p
                    for n, p in self.model.named_parameters()
                    if not any(nd in n for nd in self.no_decay) and p.requires_grad
                ],
                "weight_decay": self.hparams.optimizer_init["weight_decay"],
            },
            {
                "params": [
                    p
                    for n, p in self.model.named_parameters()
                    if any(nd in n for nd in self.no_decay) and p.requires_grad
                ],
                "weight_decay": 0.0,
            },
        ]

    def configure_optimizers(self):
        # the phase 0 parameters will have been set to require gradients during setup
        # you can initialize the optimizer with a simple requires.grad filter as is often done,
        # but in this case we pass a list of parameter groups to ensure weight_decay is
        # not applied to the bias parameter (for completeness, in this case it won't make much
        # performance difference)
        optimizer = AdamW(params=self._init_param_groups(), **self.hparams.optimizer_init)
        scheduler = {
            "scheduler": CosineAnnealingWarmRestarts(optimizer, **self.hparams.lr_scheduler_init),
            "interval": "epoch",
        }
        return [optimizer], [scheduler]

Our Training Sessions

We’ll be comparing three different fine-tuning training configurations. Every configuration in this example depends upon a shared set of defaults, only differing in their respective fine-tuning schedules.

Experiment Tag

Training Scenario Description

fts_explicit

Training with a fine-tuning schedule explicitly provided by the user

nofts_baseline

A baseline fine-tuning training session (without scheduled fine-tuning)

fts_implicit

Training with an implicitly generated fine-tuning schedule (the default)

Let’s begin by configuring the fts_explicit scenario. We’ll subsequently run the other two scenarios for comparison.

[6]:
# Let's create a fine-tuning schedule for our model and run an explicitly scheduled fine-tuning training scenario with it
# Please see the [FinetuningScheduler documentation](https://finetuning-scheduler.readthedocs.io/en/stable/index.html) for a full description of the schedule format


ft_schedule_yaml = """
0:
  params:
  - model.classifier.bias
  - model.classifier.weight
  - model.pooler.dense.bias
  - model.pooler.dense.weight
  - model.deberta.encoder.LayerNorm.bias
  - model.deberta.encoder.LayerNorm.weight
  - model.deberta.encoder.rel_embeddings.weight
  - model.deberta.encoder.layer.{0,11}.(output|attention|intermediate).*
1:
  params:
  - model.deberta.embeddings.LayerNorm.bias
  - model.deberta.embeddings.LayerNorm.weight
2:
  params:
  - model.deberta.embeddings.word_embeddings.weight
"""
ft_schedule_name = "RteBoolqModule_ft_schedule_deberta_base.yaml"
# Let's write the schedule to a file so we can simulate loading an explicitly defined fine-tuning
# schedule.
with open(ft_schedule_name, "w") as f:
    f.write(ft_schedule_yaml)
[7]:
datasets.logging.disable_progress_bar()
pl.seed_everything(42)
dm = RteBoolqDataModule(model_name_or_path="microsoft/deberta-v3-base", tokenizers_parallelism=True)
Global seed set to 42

Optimizer Configuration

Though other optimizers can arguably yield some marginal advantage contingent on the context, the Adam optimizer (and the AdamW version which implements decoupled weight decay) remains robust to hyperparameter choices and is commonly used for fine-tuning foundational language models. See (Sivaprasad et al., 2020) and (Mosbach, Andriushchenko & Klakow, 2020) for theoretical and systematic empirical justifications of Adam and its use in fine-tuning large transformer-based language models. The values used here have some justification in the referenced literature but have been largely empirically determined and while a good starting point could be could be further tuned.

[8]:
optimizer_init = {"weight_decay": 1e-05, "eps": 1e-07, "lr": 1e-05}

LR Scheduler Configuration

The CosineAnnealingWarmRestarts scheduler nicely fits with our iterative fine-tuning since it does not depend upon a global max_epoch value. The importance of initial warmup is reduced due to the innate warmup effect of Adam bias correction [5] and the gradual thawing we are performing. Note that commonly used LR schedulers that depend on providing max_iterations/epochs (e.g. the CosineWarmupScheduler used in other pytorch-lightning tutorials) also work with FinetuningScheduler. Though the LR scheduler is theoretically justified (Loshchilov & Hutter, 2016), the particular values provided here are primarily empircally driven.

FinetuningScheduler also supports LR scheduler reinitialization in both explicit and implicit finetuning schedule modes. See the advanced usage documentation for explanations and demonstration of the extension’s support for more complex requirements.

[9]:
lr_scheduler_init = {"T_0": 1, "T_mult": 2, "eta_min": 1e-07}
[10]:
# Load our lightning module...
lightning_module_kwargs = {
    "model_name_or_path": "microsoft/deberta-v3-base",
    "optimizer_init": optimizer_init,
    "lr_scheduler_init": lr_scheduler_init,
}
model = RteBoolqModule(**lightning_module_kwargs, experiment_tag="fts_explicit")

Callback Configuration

The only callback required to invoke the FinetuningScheduler is the FinetuningScheduler callback itself. Default versions of FTSCheckpoint and FTSEarlyStopping (if not specifying epoch_only_transitions) will be included (as discussed above) if not provided in the callbacks list. For demonstration purposes I’m including example configurations of all three callbacks below.

[11]:
# let's save our callback configurations for the explicit scenario since we'll be reusing the same
# configurations for the implicit and nofts_baseline scenarios (except the  config for the
# FinetuningScheduler callback itself of course in the case of nofts_baseline)
earlystopping_kwargs = {"monitor": "val_loss", "min_delta": 0.001, "patience": 2}
checkpoint_kwargs = {"monitor": "val_loss", "save_top_k": 1}
fts_kwargs = {"max_depth": 1}
callbacks = [
    fts.FinetuningScheduler(ft_schedule=ft_schedule_name, **fts_kwargs),
    fts.FTSEarlyStopping(**earlystopping_kwargs),
    fts.FTSCheckpoint(**checkpoint_kwargs),
]
[12]:
logger = TensorBoardLogger("lightning_logs", name="fts_explicit")
# optionally start tensorboard and monitor progress graphically while viewing multi-phase fine-tuning specific training
# logs in the cell output below by uncommenting the next 2 lines
# %load_ext tensorboard
# %tensorboard --logdir lightning_logs
# disable progress bar by default to focus on multi-phase training logs. Set to True to re-enable if desired
enable_progress_bar = False
[13]:


def train() -> None: trainer = pl.Trainer( enable_progress_bar=enable_progress_bar, max_epochs=100, precision=16, accelerator="auto", devices=1 if torch.cuda.is_available() else None, callbacks=callbacks, logger=logger, ) trainer.fit(model, datamodule=dm) print( "Note given the computation associated w/ the multiple phases of fine-tuning demonstrated, this notebook is best used with an accelerator" ) train()
Note given the computation associated w/ the multiple phases of fine-tuning demonstrated, this notebook is best used with an accelerator
Using 16bit native Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Downloading and preparing dataset super_glue/rte (download: 733.32 KiB, generated: 1.83 MiB, post-processed: Unknown size, total: 2.54 MiB) to /home/AzDevOps_azpcontainer/.cache/huggingface/datasets/super_glue/rte/1.0.2/d040c658e2ddef6934fdd97deb45c777b6ff50c524781ea434e7219b56a428a7...
Missing logger folder: lightning_logs/fts_explicit
Dataset super_glue downloaded and prepared to /home/AzDevOps_azpcontainer/.cache/huggingface/datasets/super_glue/rte/1.0.2/d040c658e2ddef6934fdd97deb45c777b6ff50c524781ea434e7219b56a428a7. Subsequent calls will reuse this data.
fine-tuning schedule dumped to lightning_logs/fts_explicit/version_0/RteBoolqModule_ft_schedule.yaml.
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

  | Name  | Type                               | Params
-------------------------------------------------------------
0 | model | DebertaV2ForSequenceClassification | 184 M
-------------------------------------------------------------
86.0 M    Trainable params
98.4 M    Non-trainable params
184 M     Total params
368.847   Total estimated model params size (MB)
Restoring states from the checkpoint path at lightning_logs/fts_explicit/version_0/checkpoints/epoch=2-step=468.ckpt
Restored all states from the checkpoint file at lightning_logs/fts_explicit/version_0/checkpoints/epoch=2-step=468.ckpt
Multi-phase fine-tuned training continuing at level 1.

Running the Baseline and Implicit Fine-Tuning Scenarios

Let’s now compare our nofts_baseline and fts_implicit scenarios with the fts_explicit one we just ran.

We’ll need to update our callbacks list, using the core PL EarlyStopping and ModelCheckpoint callbacks for the nofts_baseline (which operate identically to their FTS analogs apart from the recursive training support). For both core PyTorch Lightning and user-registered callbacks, we can define our callbacks using a dictionary as we do with the LightningCLI. This allows us to avoid managing imports and support more complex configuration separated from code.

Note that we’ll be using identical callback configurations to the fts_explicit scenario. Keeping max_depth for the implicit schedule will limit fine-tuning to just the last 4 parameters of the model, which is only a small fraction of the parameters you’d want to tune for maximum performance. Since the implicit schedule is quite computationally intensive and most useful for exploring model behavior, leaving max_depth 1 allows us to demo implicit mode behavior while keeping the computational cost and runtime of this notebook reasonable. To review how a full implicit mode run compares to the nofts_baseline and fts_explicit scenarios, please see the the following tensorboard experiment summary.

[14]:
nofts_callbacks = [EarlyStopping(**earlystopping_kwargs), ModelCheckpoint(**checkpoint_kwargs)]
fts_implicit_callbacks = [
    fts.FinetuningScheduler(**fts_kwargs),
    fts.FTSEarlyStopping(**earlystopping_kwargs),
    fts.FTSCheckpoint(**checkpoint_kwargs),
]
scenario_callbacks = {"nofts_baseline": nofts_callbacks, "fts_implicit": fts_implicit_callbacks}
[15]:
for scenario_name, scenario_callbacks in scenario_callbacks.items():
    model = RteBoolqModule(**lightning_module_kwargs, experiment_tag=scenario_name)
    logger = TensorBoardLogger("lightning_logs", name=scenario_name)
    callbacks = scenario_callbacks
    print(f"Beginning training the '{scenario_name}' scenario")
    train()
Beginning training the 'nofts_baseline' scenario
Using 16bit native Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Missing logger folder: lightning_logs/nofts_baseline
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

  | Name  | Type                               | Params
-------------------------------------------------------------
0 | model | DebertaV2ForSequenceClassification | 184 M
-------------------------------------------------------------
184 M     Trainable params
0         Non-trainable params
184 M     Total params
368.847   Total estimated model params size (MB)
Beginning training the 'fts_implicit' scenario
Using 16bit native Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Missing logger folder: lightning_logs/fts_implicit
fine-tuning schedule dumped to lightning_logs/fts_implicit/version_0/RteBoolqModule_ft_schedule.yaml.
Generated default fine-tuning schedule 'lightning_logs/fts_implicit/version_0/RteBoolqModule_ft_schedule.yaml' for iterative fine-tuning
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

  | Name  | Type                               | Params
-------------------------------------------------------------
0 | model | DebertaV2ForSequenceClassification | 184 M
-------------------------------------------------------------
1.5 K     Trainable params
184 M     Non-trainable params
184 M     Total params
368.847   Total estimated model params size (MB)
Restoring states from the checkpoint path at lightning_logs/fts_implicit/version_0/checkpoints/epoch=1-step=312.ckpt
Restored all states from the checkpoint file at lightning_logs/fts_implicit/version_0/checkpoints/epoch=1-step=312.ckpt
Multi-phase fine-tuned training continuing at level 1.

Reviewing the Training Results

See the tensorboard experiment summaries to get a sense of the relative computational and performance tradeoffs associated with these FinetuningScheduler configurations. The summary compares a full fts_implicit execution to fts_explicit and nofts_baseline scenarios using DDP training with 2 GPUs. The full logs/schedules and detailed system configuration used for all three scenarios are available here and the checkpoints produced in the scenarios here (caution, ~3.5GB).

fts_explicit_accuracy nofts_baseline

Note that the results above may vary to a small degree from the tensorboard summaries generated by this notebook which uses DP, 1 GPU and likely when you’re running this, different versions of certain software components (e.g. pytorch, transformers).

FinetuningScheduler expands the space of possible fine-tuning schedules and the composition of more sophisticated schedules can yield marginal fine-tuning performance gains. That stated, it should be emphasized the primary utility of FinetuningScheduler is to grant greater fine-tuning flexibility for model exploration in research. For example, glancing at DeBERTa-v3’s implicit training run, a critical tuning transition point is immediately apparent:

implicit_training_transition

Our val_loss begins a precipitous decline at step 3119 which corresponds to phase 17 in the schedule. Referring to our schedule, in phase 17 we’re beginning tuning the attention parameters of our 10th encoder layer (of 11). Interesting! Though beyond the scope of this tutorial, it might be worth investigating these dynamics further and FinetuningScheduler allows one to do just that quite easily.

Note that though this example is intended to capture a common usage scenario, substantial variation is expected among use cases and models. In summary, FinetuningScheduler provides increased fine-tuning flexibility that can be useful in a variety of contexts from exploring model tuning behavior to maximizing performance.

Footnotes

  1. Howard, J., & Ruder, S. (2018). Fine-tuned Language Models for Text Classification. ArXiv, abs/1801.06146.

  2. Chronopoulou, A., Baziotis, C., & Potamianos, A. (2019). An embarrassingly simple approach for transfer learning from pretrained language models. arXiv preprint arXiv:1902.10547.

  3. Peters, M. E., Ruder, S., & Smith, N. A. (2019). To tune or not to tune? adapting pretrained representations to diverse tasks. arXiv preprint arXiv:1903.05987.

  4. Sivaprasad, P. T., Mai, F., Vogels, T., Jaggi, M., & Fleuret, F. (2020). Optimizer benchmarking needs to account for hyperparameter tuning. In International Conference on Machine Learning (pp. 9036-9045). PMLR.

  5. Mosbach, M., Andriushchenko, M., & Klakow, D. (2020). On the stability of fine-tuning bert: Misconceptions, explanations, and strong baselines. arXiv preprint arXiv:2006.04884.

  6. Loshchilov, I., & Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983.

Congratulations - Time to Join the Community!

Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning movement, you can do so in the following ways!

Star Lightning on GitHub

The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool tools we’re building.

Join our Slack!

The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself and share your interests in #general channel

Contributions !

The best way to contribute to our community is to become a code contributor! At any time you can go to Lightning or Bolt GitHub Issues page and filter for “good first issue”.

Great thanks from the entire Pytorch Lightning Team for your interest !

Pytorch Lightning