• Docs >
  • PyTorch Lightning DataModules
Shortcuts

PyTorch Lightning DataModules

  • Author: PL team

  • License: CC BY-SA

  • Generated: 2022-08-15T09:28:45.750977

This notebook will walk you through how to start using Datamodules. With the release of pytorch-lightning version 0.9.0, we have included a new class called LightningDataModule to help you decouple data related hooks from your LightningModule. The most up-to-date documentation on datamodules can be found here.


Open in Open In Colab

Give us a ⭐ on Github | Check out the documentation | Join us on Slack

Setup

This notebook requires some packages besides pytorch-lightning.

[1]:
! pip install --quiet "torchmetrics>=0.7" "ipython[notebook]" "setuptools==59.5.0" "torch>=1.8" "pytorch-lightning>=1.4" "torchvision"

Introduction

First, we’ll go over a regular LightningModule implementation without the use of a LightningDataModule

[2]:
import os

import torch
import torch.nn.functional as F
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from torch import nn
from torch.utils.data import DataLoader, random_split
from torchmetrics.functional import accuracy
from torchvision import transforms

# Note - you must have torchvision installed for this example
from torchvision.datasets import CIFAR10, MNIST

PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
BATCH_SIZE = 256 if torch.cuda.is_available() else 64
WARNING:root:Bagua cannot detect bundled NCCL library, Bagua will try to use system NCCL instead. If you encounter any error, please run `import bagua_core; bagua_core.install_deps()` or the `bagua_install_deps.py` script to install bundled libraries.

Defining the LitMNISTModel

Below, we reuse a LightningModule from our hello world tutorial that classifies MNIST Handwritten Digits.

Unfortunately, we have hardcoded dataset-specific items within the model, forever limiting it to working with MNIST Data. 😢

This is fine if you don’t plan on training/evaluating your model on different datasets. However, in many cases, this can become bothersome when you want to try out your architecture with different datasets.

[3]:
class LitMNIST(LightningModule):
    def __init__(self, data_dir=PATH_DATASETS, hidden_size=64, learning_rate=2e-4):

        super().__init__()

        # We hardcode dataset specific stuff here.
        self.data_dir = data_dir
        self.num_classes = 10
        self.dims = (1, 28, 28)
        channels, width, height = self.dims
        self.transform = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,)),
            ]
        )

        self.hidden_size = hidden_size
        self.learning_rate = learning_rate

        # Build model
        self.model = nn.Sequential(
            nn.Flatten(),
            nn.Linear(channels * width * height, hidden_size),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_size, hidden_size),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_size, self.num_classes),
        )

    def forward(self, x):
        x = self.model(x)
        return F.log_softmax(x, dim=1)

    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        return loss

    def validation_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)
        self.log("val_loss", loss, prog_bar=True)
        self.log("val_acc", acc, prog_bar=True)

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
        return optimizer

    ####################
    # DATA RELATED HOOKS
    ####################

    def prepare_data(self):
        # download
        MNIST(self.data_dir, train=True, download=True)
        MNIST(self.data_dir, train=False, download=True)

    def setup(self, stage=None):

        # Assign train/val datasets for use in dataloaders
        if stage == "fit" or stage is None:
            mnist_full = MNIST(self.data_dir, train=True, transform=self.transform)
            self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])

        # Assign test dataset for use in dataloader(s)
        if stage == "test" or stage is None:
            self.mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)

    def train_dataloader(self):
        return DataLoader(self.mnist_train, batch_size=128)

    def val_dataloader(self):
        return DataLoader(self.mnist_val, batch_size=128)

    def test_dataloader(self):
        return DataLoader(self.mnist_test, batch_size=128)

Training the ListMNIST Model

[4]:
model = LitMNIST()
trainer = Trainer(
    max_epochs=2,
    accelerator="auto",
    devices=1 if torch.cuda.is_available() else None,  # limiting got iPython runs
    callbacks=[TQDMProgressBar(refresh_rate=20)],
)
trainer.fit(model)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

  | Name  | Type       | Params
-------------------------------------
0 | model | Sequential | 55.1 K
-------------------------------------
55.1 K    Trainable params
0         Non-trainable params
55.1 K    Total params
0.220     Total estimated model params size (MB)
/home/AzDevOps_azpcontainer/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:219: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.
  rank_zero_warn(
/home/AzDevOps_azpcontainer/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:219: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.
  rank_zero_warn(
`Trainer.fit` stopped: `max_epochs=2` reached.

Using DataModules

DataModules are a way of decoupling data-related hooks from the LightningModule so you can develop dataset agnostic models.

Defining The MNISTDataModule

Let’s go over each function in the class below and talk about what they’re doing:

  1. __init__

    • Takes in a data_dir arg that points to where you have downloaded/wish to download the MNIST dataset.

    • Defines a transform that will be applied across train, val, and test dataset splits.

    • Defines default self.dims.

  2. prepare_data

    • This is where we can download the dataset. We point to our desired dataset and ask torchvision’s MNIST dataset class to download if the dataset isn’t found there.

    • Note we do not make any state assignments in this function (i.e. self.something = ...)

  3. setup

    • Loads in data from file and prepares PyTorch tensor datasets for each split (train, val, test).

    • Setup expects a ‘stage’ arg which is used to separate logic for ‘fit’ and ‘test’.

    • If you don’t mind loading all your datasets at once, you can set up a condition to allow for both ‘fit’ related setup and ‘test’ related setup to run whenever None is passed to stage.

    • Note this runs across all GPUs and it is safe to make state assignments here

  4. x_dataloader

    • train_dataloader(), val_dataloader(), and test_dataloader() all return PyTorch DataLoader instances that are created by wrapping their respective datasets that we prepared in setup()

[5]:
class MNISTDataModule(LightningDataModule):
    def __init__(self, data_dir: str = PATH_DATASETS):
        super().__init__()
        self.data_dir = data_dir
        self.transform = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,)),
            ]
        )

        self.dims = (1, 28, 28)
        self.num_classes = 10

    def prepare_data(self):
        # download
        MNIST(self.data_dir, train=True, download=True)
        MNIST(self.data_dir, train=False, download=True)

    def setup(self, stage=None):

        # Assign train/val datasets for use in dataloaders
        if stage == "fit" or stage is None:
            mnist_full = MNIST(self.data_dir, train=True, transform=self.transform)
            self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])

        # Assign test dataset for use in dataloader(s)
        if stage == "test" or stage is None:
            self.mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)

    def train_dataloader(self):
        return DataLoader(self.mnist_train, batch_size=BATCH_SIZE)

    def val_dataloader(self):
        return DataLoader(self.mnist_val, batch_size=BATCH_SIZE)

    def test_dataloader(self):
        return DataLoader(self.mnist_test, batch_size=BATCH_SIZE)

Defining the dataset agnostic LitModel

Below, we define the same model as the LitMNIST model we made earlier.

However, this time our model has the freedom to use any input data that we’d like 🔥.

[6]:
class LitModel(LightningModule):
    def __init__(self, channels, width, height, num_classes, hidden_size=64, learning_rate=2e-4):

        super().__init__()

        # We take in input dimensions as parameters and use those to dynamically build model.
        self.channels = channels
        self.width = width
        self.height = height
        self.num_classes = num_classes
        self.hidden_size = hidden_size
        self.learning_rate = learning_rate

        self.model = nn.Sequential(
            nn.Flatten(),
            nn.Linear(channels * width * height, hidden_size),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_size, hidden_size),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_size, num_classes),
        )

    def forward(self, x):
        x = self.model(x)
        return F.log_softmax(x, dim=1)

    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        return loss

    def validation_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)
        self.log("val_loss", loss, prog_bar=True)
        self.log("val_acc", acc, prog_bar=True)

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
        return optimizer

Training the LitModel using the MNISTDataModule

Now, we initialize and train the LitModel using the MNISTDataModule’s configuration settings and dataloaders.

[7]:
# Init DataModule
dm = MNISTDataModule()
# Init model from datamodule's attributes
model = LitModel(*dm.dims, dm.num_classes)
# Init trainer
trainer = Trainer(
    max_epochs=3,
    callbacks=[TQDMProgressBar(refresh_rate=20)],
    accelerator="auto",
    devices=1 if torch.cuda.is_available() else None,  # limiting got iPython runs
)
# Pass the datamodule as arg to trainer.fit to override model hooks :)
trainer.fit(model, dm)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

  | Name  | Type       | Params
-------------------------------------
0 | model | Sequential | 55.1 K
-------------------------------------
55.1 K    Trainable params
0         Non-trainable params
55.1 K    Total params
0.220     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=3` reached.

Defining the CIFAR10 DataModule

Lets prove the LitModel we made earlier is dataset agnostic by defining a new datamodule for the CIFAR10 dataset.

[8]:
class CIFAR10DataModule(LightningDataModule):
    def __init__(self, data_dir: str = "./"):
        super().__init__()
        self.data_dir = data_dir
        self.transform = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
            ]
        )

        self.dims = (3, 32, 32)
        self.num_classes = 10

    def prepare_data(self):
        # download
        CIFAR10(self.data_dir, train=True, download=True)
        CIFAR10(self.data_dir, train=False, download=True)

    def setup(self, stage=None):

        # Assign train/val datasets for use in dataloaders
        if stage == "fit" or stage is None:
            cifar_full = CIFAR10(self.data_dir, train=True, transform=self.transform)
            self.cifar_train, self.cifar_val = random_split(cifar_full, [45000, 5000])

        # Assign test dataset for use in dataloader(s)
        if stage == "test" or stage is None:
            self.cifar_test = CIFAR10(self.data_dir, train=False, transform=self.transform)

    def train_dataloader(self):
        return DataLoader(self.cifar_train, batch_size=BATCH_SIZE)

    def val_dataloader(self):
        return DataLoader(self.cifar_val, batch_size=BATCH_SIZE)

    def test_dataloader(self):
        return DataLoader(self.cifar_test, batch_size=BATCH_SIZE)

Training the LitModel using the CIFAR10DataModule

Our model isn’t very good, so it will perform pretty badly on the CIFAR10 dataset.

The point here is that we can see that our LitModel has no problem using a different datamodule as its input data.

[9]:
dm = CIFAR10DataModule()
model = LitModel(*dm.dims, dm.num_classes, hidden_size=256)
tqdm_progress_bar = TQDMProgressBar(refresh_rate=20)
trainer = Trainer(
    max_epochs=5,
    accelerator="auto",
    devices=1 if torch.cuda.is_available() else None,  # limiting got iPython runs
    callbacks=[tqdm_progress_bar],
)
trainer.fit(model, dm)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./cifar-10-python.tar.gz
Extracting ./cifar-10-python.tar.gz to ./
Files already downloaded and verified
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

  | Name  | Type       | Params
-------------------------------------
0 | model | Sequential | 855 K
-------------------------------------
855 K     Trainable params
0         Non-trainable params
855 K     Total params
3.420     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.

Congratulations - Time to Join the Community!

Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning movement, you can do so in the following ways!

Star Lightning on GitHub

The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool tools we’re building.

Join our Slack!

The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself and share your interests in #general channel

Contributions !

The best way to contribute to our community is to become a code contributor! At any time you can go to Lightning or Bolt GitHub Issues page and filter for “good first issue”.

Great thanks from the entire Pytorch Lightning Team for your interest !

Pytorch Lightning