Shortcuts

Source code for pytorch_lightning.strategies.single_tpu

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Dict, Optional

import pytorch_lightning as pl
from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO
from pytorch_lightning.plugins.io.wrapper import _WrappingCheckpointIO
from pytorch_lightning.plugins.io.xla_plugin import XLACheckpointIO
from pytorch_lightning.plugins.precision import PrecisionPlugin
from pytorch_lightning.strategies.single_device import SingleDeviceStrategy
from pytorch_lightning.utilities import _TPU_AVAILABLE, find_shared_parameters, set_shared_parameters

if _TPU_AVAILABLE:
    import torch_xla.core.xla_model as xm


[docs]class SingleTPUStrategy(SingleDeviceStrategy): """Strategy for training on a single TPU device.""" strategy_name = "single_tpu" def __init__( self, device: int, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, debug: bool = False, ): super().__init__( accelerator=accelerator, device=xm.xla_device(device), checkpoint_io=checkpoint_io, precision_plugin=precision_plugin, ) self.debug = debug @property def checkpoint_io(self) -> CheckpointIO: if self._checkpoint_io is None: self._checkpoint_io = XLACheckpointIO() elif isinstance(self._checkpoint_io, _WrappingCheckpointIO): self._checkpoint_io.checkpoint_io = XLACheckpointIO() return self._checkpoint_io @checkpoint_io.setter def checkpoint_io(self, io: Optional[CheckpointIO]) -> None: self._checkpoint_io = io @property def is_distributed(self) -> bool: return False
[docs] def setup(self, trainer: "pl.Trainer") -> None: assert self.model, "self.model must be set before find_shared_parameters(self.model)" shared_params = find_shared_parameters(self.model) self.model_to_device() set_shared_parameters(self.model, shared_params) super().setup(trainer) if self.debug: os.environ["PT_XLA_DEBUG"] = str(1)
@classmethod def register_strategies(cls, strategy_registry: Dict) -> None: strategy_registry.register( cls.strategy_name, cls, description=f"{cls.__class__.__name__}", )
[docs] def teardown(self) -> None: super().teardown() os.environ.pop("PT_XLA_DEBUG", None)

© Copyright Copyright (c) 2018-2023, Lightning AI et al...

Built with Sphinx using a theme provided by Read the Docs.