Source code for pytorch_lightning.plugins.precision.double
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from typing import Any, cast, Generator, List, Tuple
import torch
import torch.nn as nn
from torch import FloatTensor, Tensor
from torch.optim import Optimizer
import pytorch_lightning as pl
from pytorch_lightning.overrides.base import _LightningPrecisionModuleWrapperBase
from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin
from pytorch_lightning.utilities.apply_func import apply_to_collection
class LightningDoublePrecisionModule(_LightningPrecisionModuleWrapperBase):
"""LightningModule wrapper which converts incoming floating point data in ``*_step`` and ``forward`` to double
(``torch.float64``) precision.
Args:
pl_module: the model to wrap
"""
@staticmethod
def _to_double_precision(data: Tensor) -> Tensor:
if data.is_floating_point():
return data.double()
return data
@staticmethod
def _move_float_tensors_to_double(collection: Any) -> Any:
return apply_to_collection(collection, Tensor, LightningDoublePrecisionModule._to_double_precision)
def training_step(self, *args: Any, **kwargs: Any) -> Any:
return self.module.training_step(
*LightningDoublePrecisionModule._move_float_tensors_to_double(args),
**LightningDoublePrecisionModule._move_float_tensors_to_double(kwargs),
)
def validation_step(self, *args: Any, **kwargs: Any) -> Any:
return self.module.validation_step(
*LightningDoublePrecisionModule._move_float_tensors_to_double(args),
**LightningDoublePrecisionModule._move_float_tensors_to_double(kwargs),
)
def test_step(self, *args: Any, **kwargs: Any) -> Any:
return self.module.test_step(
*LightningDoublePrecisionModule._move_float_tensors_to_double(args),
**LightningDoublePrecisionModule._move_float_tensors_to_double(kwargs),
)
def predict_step(self, *args: Any, **kwargs: Any) -> Any:
return self.module.predict_step(
*LightningDoublePrecisionModule._move_float_tensors_to_double(args),
**LightningDoublePrecisionModule._move_float_tensors_to_double(kwargs),
)
def forward(self, *args: Any, **kwargs: Any) -> Any:
return self.module(
*LightningDoublePrecisionModule._move_float_tensors_to_double(args),
**LightningDoublePrecisionModule._move_float_tensors_to_double(kwargs),
)
[docs]class DoublePrecisionPlugin(PrecisionPlugin):
"""Plugin for training with double (``torch.float64``) precision."""
precision: int = 64
[docs] def connect(
self, model: nn.Module, optimizers: List[Optimizer], lr_schedulers: List[Any]
) -> Tuple[nn.Module, List["Optimizer"], List[Any]]:
"""Converts the model to double precision and wraps it in a ``LightningDoublePrecisionModule`` to convert
incoming floating point data to double (``torch.float64``) precision.
Does not alter `optimizers` or `lr_schedulers`.
"""
model = cast(pl.LightningModule, model.double())
model = LightningDoublePrecisionModule(model)
return super().connect(model, optimizers, lr_schedulers)
[docs] @contextmanager
def forward_context(self) -> Generator[None, None, None]:
"""A context manager to change the default tensor type.
See: :meth:`torch.set_default_tensor_type`
"""
torch.set_default_tensor_type(torch.DoubleTensor)
yield
torch.set_default_tensor_type(FloatTensor)