Source code for pytorch_lightning.plugins.precision.deepspeed
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Optional, TYPE_CHECKING, Union
from torch import Tensor
from torch.nn import Module
from torch.optim import LBFGS, Optimizer
import pytorch_lightning as pl
from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin
from pytorch_lightning.utilities import GradClipAlgorithmType
from pytorch_lightning.utilities.enums import AMPType, PrecisionType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _APEX_AVAILABLE, _RequirementAvailable
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.warnings import WarningCache
_DEEPSPEED_AVAILABLE = _RequirementAvailable("deepspeed")
if TYPE_CHECKING and _DEEPSPEED_AVAILABLE:
import deepspeed
warning_cache = WarningCache()
[docs]class DeepSpeedPrecisionPlugin(PrecisionPlugin):
"""Precision plugin for DeepSpeed integration.
Args:
precision: Double precision (64), full precision (32), half precision (16) or bfloat16 precision (bf16).
amp_type: The mixed precision backend to use ("native" or "apex").
amp_level: The optimization level to use (O1, O2, etc...). By default it will be set to "O2"
if ``amp_type`` is set to "apex".
Raises:
MisconfigurationException:
If using ``bfloat16`` precision and ``deepspeed<v0.6``.
ValueError:
If unsupported ``precision`` is provided.
"""
def __init__(self, precision: Union[str, int], amp_type: str, amp_level: Optional[str] = None) -> None:
if amp_type == AMPType.APEX:
if not _APEX_AVAILABLE:
raise MisconfigurationException(
"You have asked for Apex AMP but `apex` is not installed."
" Install `apex` using this guide: https://github.com/NVIDIA/apex"
)
amp_level = amp_level or "O2"
supported_precision = (PrecisionType.HALF, PrecisionType.FLOAT, PrecisionType.BFLOAT)
if precision not in supported_precision:
raise ValueError(
f"`Trainer(strategy='deepspeed', precision={precision!r})` is not supported."
f" `precision` must be one of: {(x.value for x in supported_precision)}."
)
super().__init__()
self.precision = precision
self.amp_type = amp_type
self.amp_level = amp_level
[docs] def backward(
self,
model: "pl.LightningModule",
closure_loss: Tensor,
optimizer: Optional[Optimizer],
optimizer_idx: Optional[int],
*args: Any,
**kwargs: Any,
) -> None:
if is_overridden("backward", model):
warning_cache.warn(
"You have overridden the `LightningModule.backward` hook but it will be ignored since DeepSpeed handles"
" the backward logic internally."
)
deepspeed_engine: "deepspeed.DeepSpeedEngine" = model.trainer.model
deepspeed_engine.backward(closure_loss, *args, **kwargs)
def _run_backward(
self, tensor: Tensor, model: Optional["deepspeed.DeepSpeedEngine"], *args: Any, **kwargs: Any
) -> None:
if model is None:
raise ValueError("Please provide the model as input to `backward`.")
model.backward(tensor, *args, **kwargs)
[docs] def optimizer_step(
self,
model: Optional[Union["pl.LightningModule", Module]],
optimizer: Optimizer,
optimizer_idx: int,
closure: Callable[[], Any],
**kwargs: Any,
) -> Any:
if isinstance(optimizer, LBFGS):
raise MisconfigurationException(
f"DeepSpeed and the LBFGS optimizer are not compatible (optimizer {optimizer_idx})."
)
closure_result = closure()
self._after_closure(model, optimizer, optimizer_idx)
skipped_backward = closure_result is None
# in manual optimization, the closure does not return a value
if isinstance(model, pl.LightningModule) and model.automatic_optimization and skipped_backward:
raise MisconfigurationException(
"Skipping backward by returning `None` from your `training_step` is not supported by `DeepSpeed`"
)
# DeepSpeed handles the optimizer step internally
deepspeed_engine: "deepspeed.DeepSpeedEngine"
if isinstance(model, pl.LightningModule):
deepspeed_engine = model.trainer.model
else:
deepspeed_engine = model
return deepspeed_engine.step(**kwargs)
[docs] def clip_gradients(
self,
optimizer: Optimizer,
clip_val: Union[int, float] = 0.0,
gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM,
) -> None:
"""DeepSpeed handles gradient clipping internally."""
def _track_grad_norm(self, trainer: "pl.Trainer") -> None:
if trainer.track_grad_norm == -1:
return
# the gradients are not available in the model due to gradient partitioning in zero stage >= 2
warning_cache.warn(
f"You set `Trainer(track_grad_norm={trainer.track_grad_norm!r})' but this is not supported for DeepSpeed."
" The setting will be ignored."
)