Source code for pytorch_lightning.loggers.base
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Dict, Mapping, Optional, Sequence
import numpy as np
import pytorch_lightning.loggers.logger as logger
from pytorch_lightning.utilities.warnings import rank_zero_deprecation
def rank_zero_experiment(fn: Callable) -> Callable:
rank_zero_deprecation(
"The `pytorch_lightning.loggers.base.rank_zero_experiment` is deprecated in v1.7"
" and will be removed in v1.9. Please use `pytorch_lightning.loggers.logger.rank_zero_experiment` instead."
)
return logger.rank_zero_experiment(fn)
[docs]class LightningLoggerBase(logger.Logger):
"""Base class for experiment loggers.
Args:
agg_key_funcs:
Dictionary which maps a metric name to a function, which will
aggregate the metric values for the same steps.
agg_default_func:
Default function to aggregate metric values. If some metric name
is not presented in the `agg_key_funcs` dictionary, then the
`agg_default_func` will be used for aggregation.
.. deprecated:: v1.6
The parameters `agg_key_funcs` and `agg_default_func` are deprecated
in v1.6 and will be removed in v1.8.
Note:
The `agg_key_funcs` and `agg_default_func` arguments are used only when
one logs metrics with the :meth:`~LightningLoggerBase.agg_and_log_metrics` method.
"""
def __init__(self, *args, **kwargs) -> None: # type: ignore[no-untyped-def]
rank_zero_deprecation(
"The `pytorch_lightning.loggers.base.LightningLoggerBase` is deprecated in v1.7"
" and will be removed in v1.9. Please use `pytorch_lightning.loggers.logger.Logger` instead."
)
super().__init__(*args, **kwargs)
[docs]class LoggerCollection(logger.LoggerCollection):
def __init__(self, *args, **kwargs) -> None: # type: ignore[no-untyped-def]
super().__init__(*args, **kwargs)
[docs]class DummyExperiment(logger.DummyExperiment):
def __init__(self, *args, **kwargs) -> None: # type: ignore[no-untyped-def]
rank_zero_deprecation(
"The `pytorch_lightning.loggers.base.DummyExperiment` is deprecated in v1.7"
" and will be removed in v1.9. Please use `pytorch_lightning.loggers.logger.DummyExperiment` instead."
)
super().__init__(*args, **kwargs)
[docs]class DummyLogger(logger.DummyLogger):
def __init__(self, *args, **kwargs) -> None: # type: ignore[no-untyped-def]
rank_zero_deprecation(
"The `pytorch_lightning.loggers.base.DummyLogger` is deprecated in v1.7"
" and will be removed in v1.9. Please use `pytorch_lightning.loggers.logger.DummyLogger` instead."
)
super().__init__(*args, **kwargs)
def merge_dicts(
dicts: Sequence[Mapping],
agg_key_funcs: Optional[Mapping] = None,
default_func: Callable[[Sequence[float]], float] = np.mean,
) -> Dict:
rank_zero_deprecation(
"The `pytorch_lightning.loggers.base.merge_dicts` is deprecated in v1.7"
" and will be removed in v1.9. Please use `pytorch_lightning.loggers.logger.merge_dicts` instead."
)
return logger.merge_dicts(dicts=dicts, agg_key_funcs=agg_key_funcs, default_func=default_func)