Source code for pytorch_lightning.callbacks.gradient_accumulation_scheduler
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Gradient Accumulator
====================
Change gradient accumulation factor according to scheduling.
Trainer also calls ``optimizer.step()`` for the last indivisible step number.
"""
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.callbacks.callback import Callback
from pytorch_lightning.utilities.exceptions import MisconfigurationException
[docs]class GradientAccumulationScheduler(Callback):
r"""
Change gradient accumulation factor according to scheduling.
Args:
scheduling: scheduling in format {epoch: accumulation_factor}
Note:
The argument scheduling is a dictionary. Each key represent an epoch and
its associated accumulation factor value.
Warning: Epoch are zero-indexed c.f it means if you want to change
the accumulation factor after 4 epochs, set ``Trainer(accumulate_grad_batches={4: factor})``
or ``GradientAccumulationScheduler(scheduling={4: factor})``.
For more info check the example below.
Raises:
TypeError:
If ``scheduling`` is an empty ``dict``,
or not all keys and values of ``scheduling`` are integers.
IndexError:
If ``minimal_epoch`` is less than 0.
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import GradientAccumulationScheduler
# from epoch 5, it starts accumulating every 2 batches. Here we have 4 instead of 5
# because epoch (key) should be zero-indexed.
>>> accumulator = GradientAccumulationScheduler(scheduling={4: 2})
>>> trainer = Trainer(callbacks=[accumulator])
# alternatively, pass the scheduling dict directly to the Trainer
>>> trainer = Trainer(accumulate_grad_batches={4: 2})
"""
def __init__(self, scheduling: Dict[int, int]):
super().__init__()
if not scheduling: # empty dict error
raise TypeError("Empty dict cannot be interpreted correct")
if any(not isinstance(key, int) or key < 0 for key in scheduling):
raise MisconfigurationException(
f"Epoch should be an int greater than or equal to 0. Got {list(scheduling.keys())}."
)
if any(not isinstance(value, int) or value < 1 for value in scheduling.values()):
raise MisconfigurationException(
f"Accumulation factor should be an int greater than 0. Got {list(scheduling.values())}."
)
minimal_epoch = min(scheduling.keys())
if minimal_epoch < 0:
raise IndexError(f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct")
if minimal_epoch != 0: # if user didnt define first epoch accumulation factor
scheduling.update({0: 1})
self.scheduling = scheduling
self.epochs = sorted(scheduling.keys())
def going_to_accumulate_grad_batches(self) -> bool:
return any(v > 1 for v in self.scheduling.values())
def get_accumulate_grad_batches(self, epoch: int) -> int:
accumulate_grad_batches = 1
for iter_epoch in reversed(self.epochs):
if epoch >= iter_epoch:
accumulate_grad_batches = self.scheduling[iter_epoch]
break
return accumulate_grad_batches
[docs] def on_train_epoch_start(self, trainer: "pl.Trainer", *_: Any) -> None:
trainer.accumulate_grad_batches = self.get_accumulate_grad_batches(trainer.current_epoch)