Loading PyTorch Lightning Trained checkpoint

I am using PyTorch Lightning version 1.4.0 and have defined the following class for the dataset:

class CustomTrainDataset(Dataset):
    '''
    Custom PyTorch Dataset for training
    
    Args:
        data (pd.DataFrame) - DF containing product info (and maybe also ratings)
        all_itemIds (list) - Python3 list containing all Item IDs
    '''
    
    def __init__(self, data, all_orderIds):
        self.users, self.items, self.labels = self.get_dataset(data, all_orderIds)
    
    def __len__(self):
        return len(self.users)
  
    def __getitem__(self, idx):
        return self.users[idx], self.items[idx], self.labels[idx]
    
    def get_dataset(self, data, all_orderIds):
        users, items, labels = [], [], []
        user_item_set = set(zip(train_ratings['CustomerID'], train_ratings['ItemCode']))

        num_negatives = 7
        for u, i in user_item_set:
            users.append(u)
            items.append(i)
            labels.append(1)
            for _ in range(num_negatives):
                negative_item = np.random.choice(all_itemIds)
                while (u, negative_item) in user_item_set:
                    negative_item = np.random.choice(all_itemIds)
                users.append(u)
                items.append(negative_item)
                labels.append(0)

        return torch.tensor(users), torch.tensor(items), torch.tensor(labels)

followed by the PL class:

class NCF(pl.LightningModule):
    '''
    Neural Collaborative Filtering (NCF)
    
    Args:
        num_users (int): Number of unique users
        num_items (int): Number of unique items
        data (pd.DataFrame): Dataframe containing the food ratings for training
        all_orderIds (list): List containing all orderIds (train + test)
    '''
    
    def __init__(self, num_users, num_items, data, all_itemIds):
    # def __init__(self, num_users, num_items, ratings, all_movieIds):
        super().__init__()
        self.user_embedding = nn.Embedding(num_embeddings = num_users, embedding_dim = 8)
        # self.user_embedding = nn.Embedding(num_embeddings = num_users, embedding_dim = 10)
        self.item_embedding = nn.Embedding(num_embeddings = num_items, embedding_dim = 8)
        # self.item_embedding = nn.Embedding(num_embeddings = num_items, embedding_dim = 10)
        self.fc1 = nn.Linear(in_features = 16, out_features = 64)
        # self.fc1 = nn.Linear(in_features = 20, out_features = 64)
        self.fc2 = nn.Linear(in_features = 64, out_features = 64)
        self.fc3 = nn.Linear(in_features = 64, out_features = 32)
        self.output = nn.Linear(in_features = 32, out_features = 1)
        self.data = data
        # self.ratings = ratings
        # self.all_movieIds = all_movieIds
        self.all_orderIds = all_orderIds
        
    def forward(self, user_input, item_input):
        
        # Pass through embedding layers
        user_embedded = self.user_embedding(user_input)
        item_embedded = self.item_embedding(item_input)

        # Concat the two embedding layers
        vector = torch.cat([user_embedded, item_embedded], dim = -1)

        # Pass through dense layer
        vector = nn.ReLU()(self.fc1(vector))
        vector = nn.ReLU()(self.fc2(vector))
        vector = nn.ReLU()(self.fc3(vector))

        # Output layer
        pred = nn.Sigmoid()(self.output(vector))

        return pred
    
    def training_step(self, batch, batch_idx):
        user_input, item_input, labels = batch
        predicted_labels = self(user_input, item_input)
        loss = nn.BCELoss()(predicted_labels, labels.view(-1, 1).float())
        return loss

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters())

    def train_dataloader(self):
        return DataLoader(
            ChupsTrainDataset(
                self.data, self.all_orderIds
            ),
            batch_size = 32, num_workers = 2
            # Google Colab's suggested max number of worker in current
            # system is 2 and not 4.
        )
print(f"num_users = {num_users}, num_items = {num_items} & all_itemIds = {len(all_itemIds)}")
# num_users = 12958, num_items = 511238 & all_itemIds = 9114

# Initialize NCF model-
model = NCF(num_users, num_items, train_ratings, all_itemIds)

trainer = pl.Trainer(
    max_epochs = 75, gpus = 1,
    # max_epochs = 5,
    reload_dataloaders_every_n_epochs = True,
    # reload_dataloaders_every_epoch = True,   # deprecated!
    progress_bar_refresh_rate = 50,
    logger = False, checkpoint_callback = False)

trainer.fit(model)

# Save trained model as a checkpoint-
trainer.save_checkpoint("NCF_Trained.ckpt")

To load the saved checkpoint, I have tried:

trained_model = NCF.load_from_checkpoint(
    "NCF_Trained.ckpt", num_users = num_users,
    num_items = train_ratings, data = train_ratings,
    all_itemIds = all_itemIds)

trained_model = NCF(num_users, num_items, train_ratings, all_orderIds).load_from_checkpoint(checkpoint_path = "NCF_Trained.ckpt")

But these don’t seem to work. How do I load this saved checkpoint?

Thanks!