Custom Image Lightning Dataloader

I was wondering If you have an example code similar to this:

import lightning.pytorch as pl
from import random_split, DataLoader

# Note - you must have torchvision installed for this example
from torchvision.datasets import MNIST
from torchvision import transforms

class MNISTDataModule(pl.LightningDataModule):
    def __init__(self, data_dir: str = "./"):
        self.data_dir = data_dir
        self.transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

    def prepare_data(self):
        # download
        MNIST(self.data_dir, train=True, download=True)
        MNIST(self.data_dir, train=False, download=True)

    def setup(self, stage: str):
        # Assign train/val datasets for use in dataloaders
        if stage == "fit":
            mnist_full = MNIST(self.data_dir, train=True, transform=self.transform)
            self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])

        # Assign test dataset for use in dataloader(s)
        if stage == "test":
            self.mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)

        if stage == "predict":
            self.mnist_predict = MNIST(self.data_dir, train=False, transform=self.transform)

    def train_dataloader(self):
        return DataLoader(self.mnist_train, batch_size=32)

    def val_dataloader(self):
        return DataLoader(self.mnist_val, batch_size=32)

    def test_dataloader(self):
        return DataLoader(self.mnist_test, batch_size=32)

    def predict_dataloader(self):
        return DataLoader(self.mnist_predict, batch_size=32)

but instead of MNIST data I could plut pytorch custom image data class

import os
import pandas as pd
from import read_image

class CustomImageDataset(Dataset):
    def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
        self.img_labels = pd.read_csv(annotations_file)
        self.img_dir = img_dir
        self.transform = transform
        self.target_transform = target_transform

    def __len__(self):
        return len(self.img_labels)

    def __getitem__(self, idx):
        img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
        image = read_image(img_path)
        label = self.img_labels.iloc[idx, 1]
        if self.transform:
            image = self.transform(image)
        if self.target_transform:
            label = self.target_transform(label)
        return image, label

Will it work?