# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Literal, Optional, Union
import lightning.pytorch as pl
from lightning.pytorch.callbacks.callback import Callback
from lightning.pytorch.utilities.exceptions import MisconfigurationException
from lightning.pytorch.utilities.types import EVAL_DATALOADERS, TRAIN_DATALOADERS
if TYPE_CHECKING:
from lightning.pytorch.tuner.lr_finder import _LRFinder
[docs]class Tuner:
"""Tuner class to tune your model."""
def __init__(self, trainer: "pl.Trainer") -> None:
self._trainer = trainer
[docs] def scale_batch_size(
self,
model: "pl.LightningModule",
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None,
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
dataloaders: Optional[EVAL_DATALOADERS] = None,
datamodule: Optional["pl.LightningDataModule"] = None,
method: Literal["fit", "validate", "test", "predict"] = "fit",
mode: str = "power",
steps_per_trial: int = 3,
init_val: int = 2,
max_trials: int = 25,
batch_arg_name: str = "batch_size",
) -> Optional[int]:
"""Iteratively try to find the largest batch size for a given model that does not give an out of memory (OOM)
error.
Args:
model: Model to tune.
train_dataloaders: A collection of :class:`torch.utils.data.DataLoader` or a
:class:`~lightning.pytorch.core.datamodule.LightningDataModule` specifying training samples.
In the case of multiple dataloaders, please see this :ref:`section <multiple-dataloaders>`.
val_dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples.
dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying val/test/predict
samples used for running tuner on validation/testing/prediction.
datamodule: An instance of :class:`~lightning.pytorch.core.datamodule.LightningDataModule`.
method: Method to run tuner on. It can be any of ``("fit", "validate", "test", "predict")``.
mode: Search strategy to update the batch size:
- ``'power'``: Keep multiplying the batch size by 2, until we get an OOM error.
- ``'binsearch'``: Initially keep multiplying by 2 and after encountering an OOM error
do a binary search between the last successful batch size and the batch size that failed.
steps_per_trial: number of steps to run with a given batch size.
Ideally 1 should be enough to test if an OOM error occurs,
however in practise a few are needed
init_val: initial batch size to start the search with
max_trials: max number of increases in batch size done before
algorithm is terminated
batch_arg_name: name of the attribute that stores the batch size.
It is expected that the user has provided a model or datamodule that has a hyperparameter
with that name. We will look for this attribute name in the following places
- ``model``
- ``model.hparams``
- ``trainer.datamodule`` (the datamodule passed to the tune method)
"""
_check_tuner_configuration(train_dataloaders, val_dataloaders, dataloaders, method)
_check_scale_batch_size_configuration(self._trainer)
# local import to avoid circular import
from lightning.pytorch.callbacks.batch_size_finder import BatchSizeFinder
batch_size_finder: Callback = BatchSizeFinder(
mode=mode,
steps_per_trial=steps_per_trial,
init_val=init_val,
max_trials=max_trials,
batch_arg_name=batch_arg_name,
)
# do not continue with the loop in case Tuner is used
batch_size_finder._early_exit = True
self._trainer.callbacks = [batch_size_finder] + self._trainer.callbacks
if method == "fit":
self._trainer.fit(model, train_dataloaders, val_dataloaders, datamodule)
elif method == "validate":
self._trainer.validate(model, dataloaders, datamodule=datamodule)
elif method == "test":
self._trainer.test(model, dataloaders, datamodule=datamodule)
elif method == "predict":
self._trainer.predict(model, dataloaders, datamodule=datamodule)
self._trainer.callbacks = [cb for cb in self._trainer.callbacks if cb is not batch_size_finder]
return batch_size_finder.optimal_batch_size
[docs] def lr_find(
self,
model: "pl.LightningModule",
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None,
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
dataloaders: Optional[EVAL_DATALOADERS] = None,
datamodule: Optional["pl.LightningDataModule"] = None,
method: Literal["fit", "validate", "test", "predict"] = "fit",
min_lr: float = 1e-8,
max_lr: float = 1,
num_training: int = 100,
mode: str = "exponential",
early_stop_threshold: Optional[float] = 4.0,
update_attr: bool = True,
attr_name: str = "",
) -> Optional["_LRFinder"]:
"""Enables the user to do a range test of good initial learning rates, to reduce the amount of guesswork in
picking a good starting learning rate.
Args:
model: Model to tune.
train_dataloaders: A collection of :class:`torch.utils.data.DataLoader` or a
:class:`~lightning.pytorch.core.datamodule.LightningDataModule` specifying training samples.
In the case of multiple dataloaders, please see this :ref:`section <multiple-dataloaders>`.
val_dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples.
dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying val/test/predict
samples used for running tuner on validation/testing/prediction.
datamodule: An instance of :class:`~lightning.pytorch.core.datamodule.LightningDataModule`.
method: Method to run tuner on. It can be any of ``("fit", "validate", "test", "predict")``.
min_lr: minimum learning rate to investigate
max_lr: maximum learning rate to investigate
num_training: number of learning rates to test
mode: Search strategy to update learning rate after each batch:
- ``'exponential'``: Increases the learning rate exponentially.
- ``'linear'``: Increases the learning rate linearly.
early_stop_threshold: Threshold for stopping the search. If the
loss at any point is larger than early_stop_threshold*best_loss
then the search is stopped. To disable, set to None.
update_attr: Whether to update the learning rate attribute or not.
attr_name: Name of the attribute which stores the learning rate. The names 'learning_rate' or 'lr' get
automatically detected. Otherwise, set the name here.
Raises:
MisconfigurationException:
If learning rate/lr in ``model`` or ``model.hparams`` isn't overridden,
or if you are using more than one optimizer.
"""
if method != "fit":
raise MisconfigurationException("method='fit' is the only valid configuration to run lr finder.")
_check_tuner_configuration(train_dataloaders, val_dataloaders, dataloaders, method)
_check_lr_find_configuration(self._trainer)
# local import to avoid circular import
from lightning.pytorch.callbacks.lr_finder import LearningRateFinder
lr_finder_callback: Callback = LearningRateFinder(
min_lr=min_lr,
max_lr=max_lr,
num_training_steps=num_training,
mode=mode,
early_stop_threshold=early_stop_threshold,
update_attr=update_attr,
attr_name=attr_name,
)
lr_finder_callback._early_exit = True
self._trainer.callbacks = [lr_finder_callback] + self._trainer.callbacks
self._trainer.fit(model, train_dataloaders, val_dataloaders, datamodule)
self._trainer.callbacks = [cb for cb in self._trainer.callbacks if cb is not lr_finder_callback]
return lr_finder_callback.optimal_lr
def _check_tuner_configuration(
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None,
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
dataloaders: Optional[EVAL_DATALOADERS] = None,
method: Literal["fit", "validate", "test", "predict"] = "fit",
) -> None:
supported_methods = ("fit", "validate", "test", "predict")
if method not in supported_methods:
raise ValueError(f"method {method!r} is invalid. Should be one of {supported_methods}.")
if method == "fit":
if dataloaders is not None:
raise MisconfigurationException(
f"In tuner with method={method!r}, `dataloaders` argument should be None,"
" please consider setting `train_dataloaders` and `val_dataloaders` instead."
)
else:
if train_dataloaders is not None or val_dataloaders is not None:
raise MisconfigurationException(
f"In tuner with `method`={method!r}, `train_dataloaders` and `val_dataloaders`"
" arguments should be None, please consider setting `dataloaders` instead."
)
def _check_lr_find_configuration(trainer: "pl.Trainer") -> None:
# local import to avoid circular import
from lightning.pytorch.callbacks.lr_finder import LearningRateFinder
configured_callbacks = [cb for cb in trainer.callbacks if isinstance(cb, LearningRateFinder)]
if configured_callbacks:
raise ValueError(
"Trainer is already configured with a `LearningRateFinder` callback."
"Please remove it if you want to use the Tuner."
)
def _check_scale_batch_size_configuration(trainer: "pl.Trainer") -> None:
if trainer._accelerator_connector.is_distributed:
raise ValueError("Tuning the batch size is currently not supported with distributed strategies.")
# local import to avoid circular import
from lightning.pytorch.callbacks.batch_size_finder import BatchSizeFinder
configured_callbacks = [cb for cb in trainer.callbacks if isinstance(cb, BatchSizeFinder)]
if configured_callbacks:
raise ValueError(
"Trainer is already configured with a `BatchSizeFinder` callback."
"Please remove it if you want to use the Tuner."
)