Source code for lightning.pytorch.strategies.single_xla

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Optional, Union

import torch
from typing_extensions import override

import lightning.pytorch as pl
from lightning.fabric.accelerators.xla import _XLA_AVAILABLE
from lightning.fabric.plugins import XLACheckpointIO
from lightning.fabric.strategies import _StrategyRegistry
from lightning.fabric.utilities.optimizer import _optimizers_to_device
from lightning.fabric.utilities.types import _DEVICE
from lightning.pytorch.plugins.io.wrapper import _WrappingCheckpointIO
from lightning.pytorch.plugins.precision.xla import XLAPrecision
from lightning.pytorch.strategies.single_device import SingleDeviceStrategy
from lightning.pytorch.trainer.states import TrainerFn
from lightning.pytorch.utilities import find_shared_parameters, set_shared_parameters


[docs]class SingleDeviceXLAStrategy(SingleDeviceStrategy): """Strategy for training on a single XLA device.""" def __init__( self, device: _DEVICE, accelerator: Optional["pl.accelerators.Accelerator"] = None, checkpoint_io: Optional[Union[XLACheckpointIO, _WrappingCheckpointIO]] = None, precision_plugin: Optional[XLAPrecision] = None, debug: bool = False, ): if not _XLA_AVAILABLE: raise ModuleNotFoundError(str(_XLA_AVAILABLE)) if isinstance(device, torch.device): # unwrap the `torch.device` in favor of `xla_device` device = device.index import torch_xla.core.xla_model as xm super().__init__( accelerator=accelerator, device=xm.xla_device(device), checkpoint_io=checkpoint_io, precision_plugin=precision_plugin, ) self.debug = debug @property @override def checkpoint_io(self) -> Union[XLACheckpointIO, _WrappingCheckpointIO]: plugin = self._checkpoint_io if plugin is not None: assert isinstance(plugin, (XLACheckpointIO, _WrappingCheckpointIO)) return plugin return XLACheckpointIO() @checkpoint_io.setter @override def checkpoint_io(self, io: Optional[Union[XLACheckpointIO, _WrappingCheckpointIO]]) -> None: if io is not None and not isinstance(io, (XLACheckpointIO, _WrappingCheckpointIO)): raise TypeError(f"The XLA strategy can only work with the `XLACheckpointIO` plugin, found {io}") self._checkpoint_io = io @property @override def precision_plugin(self) -> XLAPrecision: plugin = self._precision_plugin if plugin is not None: assert isinstance(plugin, XLAPrecision) return plugin return XLAPrecision() @precision_plugin.setter @override def precision_plugin(self, precision_plugin: Optional[XLAPrecision]) -> None: if precision_plugin is not None and not isinstance(precision_plugin, XLAPrecision): raise TypeError(f"The XLA strategy can only work with the `XLAPrecision` plugin, found {precision_plugin}") self._precision_plugin = precision_plugin
[docs] @override def setup(self, trainer: "pl.Trainer") -> None: if self.debug: os.environ["PT_XLA_DEBUG"] = str(1) assert self.accelerator is not None self.accelerator.setup(trainer) assert self.model is not None self.precision_plugin.convert_module(self.model) shared_params = find_shared_parameters(self.model) self.model_to_device() set_shared_parameters(self.model, shared_params) self.model = self._setup_model(self.model) if trainer.state.fn == TrainerFn.FITTING: self.setup_optimizers(trainer) self.setup_precision_plugin() if trainer.state.fn == TrainerFn.FITTING: _optimizers_to_device(self.optimizers, self.root_device)
@classmethod @override def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None: strategy_registry.register("single_xla", cls, description=cls.__name__)
[docs] @override def teardown(self) -> None: super().teardown() os.environ.pop("PT_XLA_DEBUG", None)