Source code for lightning.pytorch.strategies.single_xla
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Optional, Union
import torch
from typing_extensions import override
import lightning.pytorch as pl
from lightning.fabric.accelerators.xla import _XLA_AVAILABLE
from lightning.fabric.plugins import XLACheckpointIO
from lightning.fabric.strategies import _StrategyRegistry
from lightning.fabric.utilities.optimizer import _optimizers_to_device
from lightning.fabric.utilities.types import _DEVICE
from lightning.pytorch.plugins.io.wrapper import _WrappingCheckpointIO
from lightning.pytorch.plugins.precision.xla import XLAPrecision
from lightning.pytorch.strategies.single_device import SingleDeviceStrategy
from lightning.pytorch.trainer.states import TrainerFn
from lightning.pytorch.utilities import find_shared_parameters, set_shared_parameters
[docs]class SingleDeviceXLAStrategy(SingleDeviceStrategy):
"""Strategy for training on a single XLA device."""
def __init__(
self,
device: _DEVICE,
accelerator: Optional["pl.accelerators.Accelerator"] = None,
checkpoint_io: Optional[Union[XLACheckpointIO, _WrappingCheckpointIO]] = None,
precision_plugin: Optional[XLAPrecision] = None,
debug: bool = False,
):
if not _XLA_AVAILABLE:
raise ModuleNotFoundError(str(_XLA_AVAILABLE))
if isinstance(device, torch.device):
# unwrap the `torch.device` in favor of `xla_device`
device = device.index
import torch_xla.core.xla_model as xm
super().__init__(
accelerator=accelerator,
device=xm.xla_device(device),
checkpoint_io=checkpoint_io,
precision_plugin=precision_plugin,
)
self.debug = debug
@property
@override
def checkpoint_io(self) -> Union[XLACheckpointIO, _WrappingCheckpointIO]:
plugin = self._checkpoint_io
if plugin is not None:
assert isinstance(plugin, (XLACheckpointIO, _WrappingCheckpointIO))
return plugin
return XLACheckpointIO()
@checkpoint_io.setter
@override
def checkpoint_io(self, io: Optional[Union[XLACheckpointIO, _WrappingCheckpointIO]]) -> None:
if io is not None and not isinstance(io, (XLACheckpointIO, _WrappingCheckpointIO)):
raise TypeError(f"The XLA strategy can only work with the `XLACheckpointIO` plugin, found {io}")
self._checkpoint_io = io
@property
@override
def precision_plugin(self) -> XLAPrecision:
plugin = self._precision_plugin
if plugin is not None:
assert isinstance(plugin, XLAPrecision)
return plugin
return XLAPrecision()
@precision_plugin.setter
@override
def precision_plugin(self, precision_plugin: Optional[XLAPrecision]) -> None:
if precision_plugin is not None and not isinstance(precision_plugin, XLAPrecision):
raise TypeError(f"The XLA strategy can only work with the `XLAPrecision` plugin, found {precision_plugin}")
self._precision_plugin = precision_plugin
[docs] @override
def setup(self, trainer: "pl.Trainer") -> None:
if self.debug:
os.environ["PT_XLA_DEBUG"] = str(1)
assert self.accelerator is not None
self.accelerator.setup(trainer)
assert self.model is not None
self.precision_plugin.convert_module(self.model)
shared_params = find_shared_parameters(self.model)
self.model_to_device()
set_shared_parameters(self.model, shared_params)
self.model = self._setup_model(self.model)
if trainer.state.fn == TrainerFn.FITTING:
self.setup_optimizers(trainer)
self.setup_precision_plugin()
if trainer.state.fn == TrainerFn.FITTING:
_optimizers_to_device(self.optimizers, self.root_device)
@classmethod
@override
def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None:
strategy_registry.register("single_xla", cls, description=cls.__name__)
[docs] @override
def teardown(self) -> None:
super().teardown()
os.environ.pop("PT_XLA_DEBUG", None)