# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
import torch
from typing_extensions import override
from lightning.fabric.plugins import Precision as FabricPrecision
from lightning.fabric.utilities.throughput import Throughput, get_available_flops
from lightning.fabric.utilities.throughput import _plugin_to_compute_dtype as fabric_plugin_to_compute_dtype
from lightning.pytorch.callbacks import Callback
from lightning.pytorch.plugins import (
BitsandbytesPrecision,
DeepSpeedPrecision,
DoublePrecision,
FSDPPrecision,
HalfPrecision,
MixedPrecision,
Precision,
TransformerEnginePrecision,
XLAPrecision,
)
from lightning.pytorch.trainer.states import RunningStage, TrainerFn
from lightning.pytorch.utilities.rank_zero import rank_zero_only, rank_zero_warn
if TYPE_CHECKING:
from lightning.pytorch import LightningModule, Trainer
[docs]class ThroughputMonitor(Callback):
r"""Computes and logs throughput with the :class:`~lightning.fabric.utilities.throughput.Throughput`
Example::
class MyModel(LightningModule):
def setup(self, stage):
with torch.device("meta"):
model = MyModel()
def sample_forward():
batch = torch.randn(..., device="meta")
return model(batch)
self.flops_per_batch = measure_flops(model, sample_forward, loss_fn=torch.Tensor.sum)
logger = ...
throughput = ThroughputMonitor(batch_size_fn=lambda batch: batch.size(0))
trainer = Trainer(max_steps=1000, log_every_n_steps=10, callbacks=throughput, logger=logger)
model = MyModel()
trainer.fit(model)
Notes:
- It assumes that the batch size is the same during all iterations.
- It will try to access a ``flops_per_batch`` attribute on your ``LightningModule`` on every iteration.
We suggest using the :func:`~lightning.fabric.utilities.throughput.measure_flops` function for this.
You might want to compute it differently each time based on your setup.
Args:
batch_size_fn: A function to compute the number of samples given a batch.
length_fn: A function to compute the number of items in a sample given a batch.
\**kwargs: See available parameters in
:class:`~lightning.fabric.utilities.throughput.Throughput`
"""
def __init__(
self, batch_size_fn: Callable[[Any], int], length_fn: Optional[Callable[[Any], int]] = None, **kwargs: Any
) -> None:
super().__init__()
self.kwargs = kwargs
self.batch_size_fn = batch_size_fn
self.length_fn = length_fn
self.available_flops: Optional[int] = None
self._throughputs: dict[RunningStage, Throughput] = {}
self._t0s: dict[RunningStage, float] = {}
self._lengths: dict[RunningStage, int] = {}
[docs] @override
def setup(self, trainer: "Trainer", pl_module: "LightningModule", stage: str) -> None:
dtype = _plugin_to_compute_dtype(trainer.precision_plugin)
self.available_flops = get_available_flops(trainer.strategy.root_device, dtype)
if stage == TrainerFn.FITTING and trainer.enable_validation:
# `fit` includes validation inside
throughput = Throughput(available_flops=self.available_flops, world_size=trainer.world_size, **self.kwargs)
self._throughputs[RunningStage.VALIDATING] = throughput
throughput = Throughput(available_flops=self.available_flops, world_size=trainer.world_size, **self.kwargs)
stage = trainer.state.stage
assert stage is not None
self._throughputs[stage] = throughput
def _start(self, trainer: "Trainer") -> None:
stage = trainer.state.stage
assert stage is not None
self._throughputs[stage].reset()
self._lengths[stage] = 0
self._t0s[stage] = time.perf_counter()
@torch.inference_mode() # in case `length_fn` or `batch_size_fn` computes grads
def _update(self, trainer: "Trainer", pl_module: "LightningModule", batch: Any, iter_num: int) -> None:
stage = trainer.state.stage
assert stage is not None
throughput = self._throughputs[stage]
if trainer.strategy.root_device.type == "cuda":
# required or else perf_counter() won't be correct
torch.cuda.synchronize()
elapsed = time.perf_counter() - self._t0s[stage]
if self.length_fn is not None:
self._lengths[stage] += self.length_fn(batch)
if hasattr(pl_module, "flops_per_batch"):
flops_per_batch = pl_module.flops_per_batch
else:
rank_zero_warn(
"When using the `ThroughputMonitor`, you need to define a `flops_per_batch` attribute or property"
f" in {type(pl_module).__name__} to compute the FLOPs."
)
flops_per_batch = None
batch_size = self.batch_size_fn(batch)
throughput.update(
time=elapsed,
batches=iter_num,
# this assumes that all iterations used the same batch size
samples=iter_num * batch_size,
lengths=None if self.length_fn is None else self._lengths[stage],
flops=flops_per_batch,
)
def _compute(self, trainer: "Trainer", iter_num: Optional[int] = None) -> None:
if not trainer._logger_connector.should_update_logs:
return
stage = trainer.state.stage
assert stage is not None
throughput = self._throughputs[stage]
metrics = throughput.compute()
# prefix with the stage to avoid collisions
metrics = {f"{stage.value}{throughput.separator}{k}": v for k, v in metrics.items()}
trainer._logger_connector.log_metrics(metrics, step=iter_num) # type: ignore[arg-type]
[docs] @override
@rank_zero_only
def on_train_start(self, trainer: "Trainer", *_: Any) -> None:
self._start(trainer)
[docs] @override
@rank_zero_only
def on_train_batch_end(
self, trainer: "Trainer", pl_module: "LightningModule", outputs: Any, batch: Any, *_: Any
) -> None:
self._update(trainer, pl_module, batch, trainer.fit_loop.total_batch_idx + 1)
# log only when gradient accumulation is over. this ensures that we only measure when the effective batch has
# finished and the `optimizer.step()` time is included
if not trainer.fit_loop._should_accumulate():
self._compute(trainer)
[docs] @override
@rank_zero_only
def on_validation_start(self, trainer: "Trainer", *_: Any) -> None:
if trainer.sanity_checking:
return
self._start(trainer)
[docs] @override
@rank_zero_only
def on_validation_batch_end(
self, trainer: "Trainer", pl_module: "LightningModule", outputs: Any, batch: Any, *_: Any, **__: Any
) -> None:
if trainer.sanity_checking:
return
iter_num = trainer._evaluation_loop.batch_progress.total.ready
self._update(trainer, pl_module, batch, iter_num)
self._compute(trainer, iter_num)
[docs] @override
@rank_zero_only
def on_validation_end(self, trainer: "Trainer", *_: Any) -> None:
if trainer.sanity_checking or trainer.state.fn != TrainerFn.FITTING:
return
# add the validation time to the training time before continuing to avoid sinking the training throughput
training_finished = self._t0s[RunningStage.TRAINING] + sum(self._throughputs[RunningStage.TRAINING]._time)
time_between_train_and_val = self._t0s[RunningStage.VALIDATING] - training_finished
val_time = sum(self._throughputs[RunningStage.VALIDATING]._time)
self._t0s[RunningStage.TRAINING] += time_between_train_and_val + val_time
[docs] @override
@rank_zero_only
def on_test_start(self, trainer: "Trainer", *_: Any) -> None:
self._start(trainer)
[docs] @override
@rank_zero_only
def on_test_batch_end(
self, trainer: "Trainer", pl_module: "LightningModule", outputs: Any, batch: Any, *_: Any, **__: Any
) -> None:
iter_num = trainer._evaluation_loop.batch_progress.total.ready
self._update(trainer, pl_module, batch, iter_num)
self._compute(trainer, iter_num)
[docs] @override
@rank_zero_only
def on_predict_start(self, trainer: "Trainer", *_: Any) -> None:
self._start(trainer)
[docs] @override
@rank_zero_only
def on_predict_batch_end(
self, trainer: "Trainer", pl_module: "LightningModule", outputs: Any, batch: Any, *_: Any, **__: Any
) -> None:
iter_num = trainer.predict_loop.batch_progress.total.ready
self._update(trainer, pl_module, batch, iter_num)
self._compute(trainer, iter_num)
def _plugin_to_compute_dtype(plugin: Union[FabricPrecision, Precision]) -> torch.dtype:
# TODO: integrate this into the precision plugins
if not isinstance(plugin, Precision):
return fabric_plugin_to_compute_dtype(plugin)
if isinstance(plugin, BitsandbytesPrecision):
return plugin.dtype
if isinstance(plugin, HalfPrecision):
return plugin._desired_input_dtype
if isinstance(plugin, MixedPrecision):
return torch.bfloat16 if plugin.precision == "bf16-mixed" else torch.half
if isinstance(plugin, DoublePrecision):
return torch.double
if isinstance(plugin, (XLAPrecision, DeepSpeedPrecision)):
return plugin._desired_dtype
if isinstance(plugin, TransformerEnginePrecision):
return torch.int8
if isinstance(plugin, FSDPPrecision):
return plugin.mixed_precision_config.reduce_dtype or torch.float32
if isinstance(plugin, Precision):
return torch.float32
raise NotImplementedError(plugin)