SingleHPUStrategy
class pytorch_lightning.strategies. SingleHPUStrategy ( device = 'hpu' , accelerator = None , checkpoint_io = None , precision_plugin = None ) [source]
Bases: pytorch_lightning.strategies.single_device.SingleDeviceStrategy
Strategy for training on single HPU device.
model_to_device ( ) [source]
Moves the model to the correct device.
Return type
None
optimizer_step ( optimizer , opt_idx , closure , model = None , ** kwargs ) [source]
Performs the actual optimizer step.
Parameters
optimizer (Optimizer
) – the optimizer performing the step
opt_idx (int
) – index of the current optimizer
closure (Callable
[[], Any
]) – closure calculating the loss value
model (Union
[LightningModule
, Module
, None
]) – reference to the model, optionally defining optimizer step related hooks
**kwargs – Keyword arguments to to optimizer.step
Return type
Any
setup ( trainer ) [source]
Setup plugins for the trainer fit and creates optimizers.
Parameters
trainer (Trainer
) – the trainer instance
Return type
None
setup_optimizers ( trainer ) [source]
Creates optimizers and schedulers.
Parameters
trainer (Trainer
) – the Trainer, these optimizers should be connected to
Return type
None
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. Read PyTorch Lightning's Privacy Policy .