Trainer¶
- class pytorch_lightning.trainer.trainer.Trainer(logger=True, enable_checkpointing=True, callbacks=None, default_root_dir=None, gradient_clip_val=None, gradient_clip_algorithm=None, num_nodes=1, num_processes=None, devices=None, gpus=None, auto_select_gpus=None, tpu_cores=None, ipus=None, enable_progress_bar=True, overfit_batches=0.0, track_grad_norm=- 1, check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=None, max_epochs=None, min_epochs=None, max_steps=- 1, min_steps=None, max_time=None, limit_train_batches=None, limit_val_batches=None, limit_test_batches=None, limit_predict_batches=None, val_check_interval=None, log_every_n_steps=50, accelerator=None, strategy=None, sync_batchnorm=False, precision=32, enable_model_summary=True, num_sanity_val_steps=2, resume_from_checkpoint=None, profiler=None, benchmark=None, deterministic=None, reload_dataloaders_every_n_epochs=0, auto_lr_find=False, replace_sampler_ddp=True, detect_anomaly=False, auto_scale_batch_size=False, plugins=None, amp_backend=None, amp_level=None, move_metrics_to_cpu=False, multiple_trainloader_mode='max_size_cycle', inference_mode=True)[source]¶
Bases:
object
Customize every aspect of training via flags.
- Parameters
accelerator¶ (
Union
[str
,Accelerator
,None
]) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps”, “auto”) as well as custom accelerator instances.accumulate_grad_batches¶ (
Union
[int
,Dict
[int
,int
],None
]) – Accumulates grads every k batches or as set up in the dict. Default:None
.amp_backend¶ (
Optional
[str
]) –The mixed precision backend to use (“native” or “apex”). Default:
'native''
.Deprecated since version v1.9: Setting
amp_backend
inside theTrainer
is deprecated in v1.8.0 and will be removed in v2.0.0. This argument was only relevant for apex which is being removed.The optimization level to use (O1, O2, etc…). By default it will be set to “O2” if
amp_backend
is set to “apex”.Deprecated since version v1.8: Setting
amp_level
inside theTrainer
is deprecated in v1.8.0 and will be removed in v2.0.0.auto_lr_find¶ (
Union
[bool
,str
]) – If set to True, will make trainer.tune() run a learning rate finder, trying to optimize initial learning for faster convergence. trainer.tune() method will set the suggested learning rate in self.lr or self.learning_rate in the LightningModule. To use a different key set a string instead of True with the key name. Default:False
.auto_scale_batch_size¶ (
Union
[str
,bool
]) – If set to True, will initially run a batch size finder trying to find the largest batch size that fits into memory. The result will be stored in self.batch_size in the LightningModule or LightningDataModule depending on your setup. Additionally, can be set to either power that estimates the batch size through a power search or binsearch that estimates the batch size through a binary search. Default:False
.auto_select_gpus¶ (
Optional
[bool
]) –If enabled and
gpus
ordevices
is an integer, pick available gpus automatically. This is especially useful when GPUs are configured to be in “exclusive mode”, such that only one process at a time can access them. Default:False
.Deprecated since version v1.9:
auto_select_gpus
has been deprecated in v1.9.0 and will be removed in v2.0.0. Please use the functionfind_usable_cuda_devices()
instead.benchmark¶ (
Optional
[bool
]) – The value (True
orFalse
) to settorch.backends.cudnn.benchmark
to. The value fortorch.backends.cudnn.benchmark
set in the current session will be used (False
if not manually set). Ifdeterministic
is set toTrue
, this will default toFalse
. Override to manually set a different value. Default:None
.callbacks¶ (
Union
[List
[Callback
],Callback
,None
]) – Add a callback or list of callbacks. Default:None
.enable_checkpointing¶ (
bool
) – IfTrue
, enable checkpointing. It will configure a default ModelCheckpoint callback if there is no user-defined ModelCheckpoint incallbacks
. Default:True
.check_val_every_n_epoch¶ (
Optional
[int
]) – Perform a validation loop every after every N training epochs. IfNone
, validation will be done solely based on the number of training batches, requiringval_check_interval
to be an integer value. Default:1
.default_root_dir¶ (
Union
[str
,Path
,None
]) – Default path for logs and weights when no logger/ckpt_callback passed. Default:os.getcwd()
. Can be remote file paths such as s3://mybucket/path or ‘hdfs://path/’detect_anomaly¶ (
bool
) – Enable anomaly detection for the autograd engine. Default:False
.deterministic¶ (
Union
[bool
,Literal
[‘warn’],None
]) – IfTrue
, sets whether PyTorch operations must use deterministic algorithms. Set to"warn"
to use deterministic algorithms whenever possible, throwing warnings on operations that don’t support deterministic mode (requires PyTorch 1.11+). If not set, defaults toFalse
. Default:None
.devices¶ (
Union
[List
[int
],str
,int
,None
]) – Will be mapped to either gpus, tpu_cores, num_processes or ipus, based on the accelerator type.fast_dev_run¶ (
Union
[int
,bool
]) – Runs n if set ton
(int) else 1 if set toTrue
batch(es) of train, val and test to find any bugs (ie: a sort of unit test). Default:False
.gpus¶ (
Union
[List
[int
],str
,int
,None
]) –Number of GPUs to train on (int) or which GPUs to train on (list or str) applied per node Default:
None
.Deprecated since version v1.7:
gpus
has been deprecated in v1.7 and will be removed in v2.0. Please useaccelerator='gpu'
anddevices=x
instead.gradient_clip_val¶ (
Union
[int
,float
,None
]) – The value at which to clip gradients. Passinggradient_clip_val=None
disables gradient clipping. If using Automatic Mixed Precision (AMP), the gradients will be unscaled before. Default:None
.gradient_clip_algorithm¶ (
Optional
[str
]) – The gradient clipping algorithm to use. Passgradient_clip_algorithm="value"
to clip by value, andgradient_clip_algorithm="norm"
to clip by norm. By default it will be set to"norm"
.limit_train_batches¶ (
Union
[int
,float
,None
]) – How much of training dataset to check (float = fraction, int = num_batches). Default:1.0
.limit_val_batches¶ (
Union
[int
,float
,None
]) – How much of validation dataset to check (float = fraction, int = num_batches). Default:1.0
.limit_test_batches¶ (
Union
[int
,float
,None
]) – How much of test dataset to check (float = fraction, int = num_batches). Default:1.0
.limit_predict_batches¶ (
Union
[int
,float
,None
]) – How much of prediction dataset to check (float = fraction, int = num_batches). Default:1.0
.logger¶ (
Union
[Logger
,Iterable
[Logger
],bool
]) – Logger (or iterable collection of loggers) for experiment tracking. ATrue
value uses the defaultTensorBoardLogger
if it is installed, otherwiseCSVLogger
.False
will disable logging. If multiple loggers are provided, local files (checkpoints, profiler traces, etc.) are saved in thelog_dir
of the first logger. Default:True
.log_every_n_steps¶ (
int
) – How often to log within steps. Default:50
.enable_progress_bar¶ (
bool
) – Whether to enable to progress bar by default. Default:True
.profiler¶ (
Union
[Profiler
,str
,None
]) – To profile individual steps during training and assist in identifying bottlenecks. Default:None
.overfit_batches¶ (
Union
[int
,float
]) – Overfit a fraction of training/validation data (float) or a set number of batches (int). Default:0.0
.plugins¶ (
Union
[PrecisionPlugin
,ClusterEnvironment
,CheckpointIO
,LayerSync
,str
,List
[Union
[PrecisionPlugin
,ClusterEnvironment
,CheckpointIO
,LayerSync
,str
]],None
]) – Plugins allow modification of core behavior like ddp and amp, and enable custom lightning plugins. Default:None
.precision¶ (
Union
[Literal
[64, 32, 16],Literal
[‘64’, ‘32’, ‘16’, ‘bf16’]]) – Double precision (64), full precision (32), half precision (16) or bfloat16 precision (bf16). Can be used on CPU, GPU, TPUs, HPUs or IPUs. Default:32
.max_epochs¶ (
Optional
[int
]) – Stop training once this number of epochs is reached. Disabled by default (None). If both max_epochs and max_steps are not specified, defaults tomax_epochs = 1000
. To enable infinite training, setmax_epochs = -1
.min_epochs¶ (
Optional
[int
]) – Force training for at least these many epochs. Disabled by default (None).max_steps¶ (
int
) – Stop training after this number of steps. Disabled by default (-1). Ifmax_steps = -1
andmax_epochs = None
, will default tomax_epochs = 1000
. To enable infinite training, setmax_epochs
to-1
.min_steps¶ (
Optional
[int
]) – Force training for at least these number of steps. Disabled by default (None
).max_time¶ (
Union
[str
,timedelta
,Dict
[str
,int
],None
]) – Stop training after this amount of time has passed. Disabled by default (None
). The time duration can be specified in the format DD:HH:MM:SS (days, hours, minutes seconds), as adatetime.timedelta
, or a dictionary with keys that will be passed todatetime.timedelta
.num_nodes¶ (
int
) – Number of GPU nodes for distributed training. Default:1
.num_processes¶ (
Optional
[int
]) –Number of processes for distributed training with
accelerator="cpu"
. Default:1
.Deprecated since version v1.7:
num_processes
has been deprecated in v1.7 and will be removed in v2.0. Please useaccelerator='cpu'
anddevices=x
instead.num_sanity_val_steps¶ (
int
) – Sanity check runs n validation batches before starting the training routine. Set it to -1 to run all batches in all validation dataloaders. Default:2
.reload_dataloaders_every_n_epochs¶ (
int
) – Set to a non-negative integer to reload dataloaders every n epochs. Default:0
.replace_sampler_ddp¶ (
bool
) – Explicitly enables or disables sampler replacement. If not specified this will toggled automatically when DDP is used. By default it will addshuffle=True
for train sampler andshuffle=False
for val/test sampler. If you want to customize it, you can setreplace_sampler_ddp=False
and add your own distributed sampler.resume_from_checkpoint¶ (
Union
[str
,Path
,None
]) –Path/URL of the checkpoint from which training is resumed. If there is no checkpoint file at the path, an exception is raised. If resuming from mid-epoch checkpoint, training will start from the beginning of the next epoch.
Deprecated since version v1.5:
resume_from_checkpoint
is deprecated in v1.5 and will be removed in v2.0. Please pass the path toTrainer.fit(..., ckpt_path=...)
instead.strategy¶ (
Union
[str
,Strategy
,None
]) – Supports different training strategies with aliases as well custom strategies. Default:None
.sync_batchnorm¶ (
bool
) – Synchronize batch norm layers between process groups/whole world. Default:False
.tpu_cores¶ (
Union
[List
[int
],str
,int
,None
]) –How many TPU cores to train on (1 or 8) / Single TPU to train on (1) Default:
None
.Deprecated since version v1.7:
tpu_cores
has been deprecated in v1.7 and will be removed in v2.0. Please useaccelerator='tpu'
anddevices=x
instead.How many IPUs to train on. Default:
None
.Deprecated since version v1.7:
ipus
has been deprecated in v1.7 and will be removed in v2.0. Please useaccelerator='ipu'
anddevices=x
instead.track_grad_norm¶ (
Union
[int
,float
,str
]) – -1 no tracking. Otherwise tracks that p-norm. May be set to ‘inf’ infinity-norm. If using Automatic Mixed Precision (AMP), the gradients will be unscaled before logging them. Default:-1
.val_check_interval¶ (
Union
[int
,float
,None
]) – How often to check the validation set. Pass afloat
in the range [0.0, 1.0] to check after a fraction of the training epoch. Pass anint
to check after a fixed number of training batches. Anint
value can only be higher than the number of training batches whencheck_val_every_n_epoch=None
, which validates after everyN
training batches across epochs or during iteration-based training. Default:1.0
.enable_model_summary¶ (
bool
) – Whether to enable model summarization by default. Default:True
.move_metrics_to_cpu¶ (
bool
) – Whether to force internal logged metrics to be moved to cpu. This can save some gpu memory, but can make training slower. Use with attention. Default:False
.multiple_trainloader_mode¶ (
str
) – How to loop over the datasets when there are multiple train loaders. In ‘max_size_cycle’ mode, the trainer ends one epoch when the largest dataset is traversed, and smaller datasets reload when running out of their data. In ‘min_size’ mode, all the datasets reload when reaching the minimum length of datasets. Default:"max_size_cycle"
.inference_mode¶ (
bool
) – Whether to usetorch.inference_mode()
ortorch.no_grad()
during evaluation (validate
/test
/predict
).
- fit(model, train_dataloaders=None, val_dataloaders=None, datamodule=None, ckpt_path=None)[source]¶
Runs the full optimization routine.
- Parameters
model¶ (
LightningModule
) – Model to fit.train_dataloaders¶ (
Union
[DataLoader
,Sequence
[DataLoader
],Sequence
[Sequence
[DataLoader
]],Sequence
[Dict
[str
,DataLoader
]],Dict
[str
,DataLoader
],Dict
[str
,Dict
[str
,DataLoader
]],Dict
[str
,Sequence
[DataLoader
]],LightningDataModule
,None
]) – A collection oftorch.utils.data.DataLoader
or aLightningDataModule
specifying training samples. In the case of multiple dataloaders, please see this section.val_dataloaders¶ (
Union
[DataLoader
,Sequence
[DataLoader
],None
]) – Atorch.utils.data.DataLoader
or a sequence of them specifying validation samples.ckpt_path¶ (
Optional
[str
]) – Path/URL of the checkpoint from which training is resumed. Could also be one of two special keywords"last"
and"hpc"
. If there is no checkpoint file at the path, an exception is raised. If resuming from mid-epoch checkpoint, training will start from the beginning of the next epoch.datamodule¶ (
Optional
[LightningDataModule
]) – An instance ofLightningDataModule
.
- Return type
- predict(model=None, dataloaders=None, datamodule=None, return_predictions=None, ckpt_path=None)[source]¶
Run inference on your data. This will call the model forward function to compute predictions. Useful to perform distributed and batched predictions. Logging is disabled in the predict hooks.
- Parameters
model¶ (
Optional
[LightningModule
]) – The model to predict with.dataloaders¶ (
Union
[DataLoader
,Sequence
[DataLoader
],LightningDataModule
,None
]) – Atorch.utils.data.DataLoader
or a sequence of them, or aLightningDataModule
specifying prediction samples.datamodule¶ (
Optional
[LightningDataModule
]) – The datamodule with a predict_dataloader method that returns one or more dataloaders.return_predictions¶ (
Optional
[bool
]) – Whether to return predictions.True
by default except when an accelerator that spawns processes is used (not supported).ckpt_path¶ (
Optional
[str
]) – Either"best"
,"last"
,"hpc"
or path to the checkpoint you wish to predict. IfNone
and the model instance was passed, use the current weights. Otherwise, the best model checkpoint from the previoustrainer.fit
call will be loaded if a checkpoint callback is configured.
- Return type
- Returns
Returns a list of dictionaries, one for each provided dataloader containing their respective predictions.
See Lightning inference section for more.
- reset_predict_dataloader(model=None)[source]¶
Resets the predict dataloader and determines the number of batches.
- Parameters
model¶ (
Optional
[LightningModule
]) – TheLightningModule
if called outside of the trainer scope.- Return type
- reset_test_dataloader(model=None)[source]¶
Resets the test dataloader and determines the number of batches.
- Parameters
model¶ (
Optional
[LightningModule
]) – TheLightningModule
if called outside of the trainer scope.- Return type
- reset_train_dataloader(model=None)[source]¶
Resets the train dataloader and initialises required variables (number of batches, when to validate, etc.).
- Parameters
model¶ (
Optional
[LightningModule
]) – TheLightningModule
if calling this outside of the trainer scope.- Return type
- reset_val_dataloader(model=None)[source]¶
Resets the validation dataloader and determines the number of batches.
- Parameters
model¶ (
Optional
[LightningModule
]) – TheLightningModule
if called outside of the trainer scope.- Return type
- save_checkpoint(filepath, weights_only=False, storage_options=None)[source]¶
Runs routine to create a checkpoint.
- test(model=None, dataloaders=None, ckpt_path=None, verbose=True, datamodule=None)[source]¶
Perform one evaluation epoch over the test set. It’s separated from fit to make sure you never run on your test set until you want to.
- Parameters
model¶ (
Optional
[LightningModule
]) – The model to test.dataloaders¶ (
Union
[DataLoader
,Sequence
[DataLoader
],LightningDataModule
,None
]) – Atorch.utils.data.DataLoader
or a sequence of them, or aLightningDataModule
specifying test samples.ckpt_path¶ (
Optional
[str
]) – Either"best"
,"last"
,"hpc"
or path to the checkpoint you wish to test. IfNone
and the model instance was passed, use the current weights. Otherwise, the best model checkpoint from the previoustrainer.fit
call will be loaded if a checkpoint callback is configured.datamodule¶ (
Optional
[LightningDataModule
]) – An instance ofLightningDataModule
.
- Return type
- Returns
List of dictionaries with metrics logged during the test phase, e.g., in model- or callback hooks like
test_step()
,test_epoch_end()
, etc. The length of the list corresponds to the number of test dataloaders used.
- tune(model, train_dataloaders=None, val_dataloaders=None, dataloaders=None, datamodule=None, scale_batch_size_kwargs=None, lr_find_kwargs=None, method='fit')[source]¶
Runs routines to tune hyperparameters before training.
- Parameters
model¶ (
LightningModule
) – Model to tune.train_dataloaders¶ (
Union
[DataLoader
,Sequence
[DataLoader
],Sequence
[Sequence
[DataLoader
]],Sequence
[Dict
[str
,DataLoader
]],Dict
[str
,DataLoader
],Dict
[str
,Dict
[str
,DataLoader
]],Dict
[str
,Sequence
[DataLoader
]],LightningDataModule
,None
]) – A collection oftorch.utils.data.DataLoader
or aLightningDataModule
specifying training samples. In the case of multiple dataloaders, please see this section.val_dataloaders¶ (
Union
[DataLoader
,Sequence
[DataLoader
],None
]) – Atorch.utils.data.DataLoader
or a sequence of them specifying validation samples.dataloaders¶ (
Union
[DataLoader
,Sequence
[DataLoader
],None
]) – Atorch.utils.data.DataLoader
or a sequence of them specifying val/test/predict samples used for running tuner on validation/testing/prediction.datamodule¶ (
Optional
[LightningDataModule
]) – An instance ofLightningDataModule
.scale_batch_size_kwargs¶ (
Optional
[Dict
[str
,Any
]]) – Arguments forscale_batch_size()
lr_find_kwargs¶ (
Optional
[Dict
[str
,Any
]]) – Arguments forlr_find()
method¶ (
Literal
[‘fit’, ‘validate’, ‘test’, ‘predict’]) – Method to run tuner on. It can be any of("fit", "validate", "test", "predict")
.
- Return type
_TunerResult
- validate(model=None, dataloaders=None, ckpt_path=None, verbose=True, datamodule=None)[source]¶
Perform one evaluation epoch over the validation set.
- Parameters
model¶ (
Optional
[LightningModule
]) – The model to validate.dataloaders¶ (
Union
[DataLoader
,Sequence
[DataLoader
],LightningDataModule
,None
]) – Atorch.utils.data.DataLoader
or a sequence of them, or aLightningDataModule
specifying validation samples.ckpt_path¶ (
Optional
[str
]) – Either"best"
,"last"
,"hpc"
or path to the checkpoint you wish to validate. IfNone
and the model instance was passed, use the current weights. Otherwise, the best model checkpoint from the previoustrainer.fit
call will be loaded if a checkpoint callback is configured.datamodule¶ (
Optional
[LightningDataModule
]) – An instance ofLightningDataModule
.
- Return type
- Returns
List of dictionaries with metrics logged during the validation phase, e.g., in model- or callback hooks like
validation_step()
,validation_epoch_end()
, etc. The length of the list corresponds to the number of validation dataloaders used.
- property checkpoint_callback: Optional[pytorch_lightning.callbacks.checkpoint.Checkpoint]¶
The first
ModelCheckpoint
callback in the Trainer.callbacks list, orNone
if it doesn’t exist.- Return type
Optional
[Checkpoint
]
- property checkpoint_callbacks: List[pytorch_lightning.callbacks.checkpoint.Checkpoint]¶
A list of all instances of
ModelCheckpoint
found in the Trainer.callbacks list.- Return type
List
[Checkpoint
]
- property ckpt_path: Optional[str]¶
Set to the path/URL of a checkpoint loaded via
fit()
,validate()
,test()
, orpredict()
.None
otherwise.
- property current_epoch: int¶
The current epoch, updated after the epoch end hooks are run.
- Return type
- property default_root_dir: str¶
The default location to save artifacts of loggers, checkpoints etc.
It is used as a fallback if logger or checkpoint callback do not define specific save paths.
- Return type
- property early_stopping_callback: Optional[pytorch_lightning.callbacks.early_stopping.EarlyStopping]¶
The first
EarlyStopping
callback in the Trainer.callbacks list, orNone
if it doesn’t exist.- Return type
- property early_stopping_callbacks: List[pytorch_lightning.callbacks.early_stopping.EarlyStopping]¶
A list of all instances of
EarlyStopping
found in the Trainer.callbacks list.- Return type
- property estimated_stepping_batches: Union[int, float]¶
Estimated stepping batches for the complete training inferred from DataLoaders, gradient accumulation factor and distributed setup.
Examples:
def configure_optimizers(self): optimizer = ... scheduler = torch.optim.lr_scheduler.OneCycleLR( optimizer, max_lr=1e-3, total_steps=self.trainer.estimated_stepping_batches ) return [optimizer], [scheduler]
- property global_step: int¶
The number of optimizer steps taken (does not reset each epoch).
This includes multiple optimizers and TBPTT steps (if enabled).
- Return type
- property model: Optional[torch.nn.modules.module.Module]¶
The LightningModule, but possibly wrapped into DataParallel or DistributedDataParallel.
To access the pure LightningModule, use
lightning_module()
instead.
- property prediction_writer_callbacks: List[pytorch_lightning.callbacks.prediction_writer.BasePredictionWriter]¶
A list of all instances of
BasePredictionWriter
found in the Trainer.callbacks list.- Return type
- property progress_bar_callback: Optional[pytorch_lightning.callbacks.progress.base.ProgressBarBase]¶
An instance of
ProgressBarBase
found in the Trainer.callbacks list, orNone
if one doesn’t exist.- Return type