DeepSpeedStrategy¶
- class pytorch_lightning.strategies.DeepSpeedStrategy(accelerator=None, zero_optimization=True, stage=2, remote_device='cpu', offload_optimizer=False, offload_parameters=False, offload_params_device='cpu', nvme_path='/local_nvme', params_buffer_count=5, params_buffer_size=100000000, max_in_cpu=1000000000, offload_optimizer_device='cpu', optimizer_buffer_count=4, block_size=1048576, queue_depth=8, single_submit=False, overlap_events=True, thread_count=1, pin_memory=False, sub_group_size=1000000000000, contiguous_gradients=True, overlap_comm=True, allgather_partitions=True, reduce_scatter=True, allgather_bucket_size=200000000, reduce_bucket_size=200000000, zero_allow_untested_optimizer=True, logging_batch_size_per_gpu='auto', config=None, logging_level=30, parallel_devices=None, cluster_environment=None, loss_scale=0, initial_scale_power=16, loss_scale_window=1000, hysteresis=2, min_loss_scale=1, partition_activations=False, cpu_checkpointing=False, contiguous_memory_optimization=False, synchronize_checkpoint_boundary=False, load_full_weights=False, precision_plugin=None, process_group_backend=None)[source]¶
Bases:
pytorch_lightning.strategies.ddp.DDPStrategy
Provides capabilities to run training using the DeepSpeed library, with training optimizations for large billion parameter models. For more information: https://pytorch- lightning.readthedocs.io/en/stable/advanced/model_parallel.html#deepspeed.
Warning
DeepSpeedStrategy
is in beta and subject to change.Defaults have been set to enable ZeRO-Offload and some have been taken from the link below. These defaults have been set generally, but may require tuning for optimum performance based on your model size. For more information: https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training.
- Parameters
zero_optimization¶ (
bool
) – Enable ZeRO optimization. This is compatible with either precision=16 or precision=”bf16”.stage¶ (
int
) – Different stages of the ZeRO Optimizer. 0 is disabled, 1 is optimizer state partitioning, 2 is optimizer+gradient state partitioning, 3 is optimizer+gradient_parameter partitioning using the infinity engine.remote_device¶ (
str
) – Device to instantiate the model on initially (cpu
ornvme
).offload_optimizer¶ (
bool
) – Enable offloading optimizer memory and computation to CPU or NVMe based onoffload_optimizer_device
.offload_parameters¶ (
bool
) – When using ZeRO Stage 3, Enable offloading parameter memory and computation to CPU or NVMe based onoffload_params_device
.offload_params_device¶ (
str
) – When offloading parameters choose the device to offload to,cpu
ornvme
.offload_optimizer_device¶ (
str
) – When offloading optimizer state choose the device to offload to,cpu
ornvme
.params_buffer_count¶ (
int
) – Number of buffers in buffer pool for parameter offloading whenoffload_params_device
isnvme
.params_buffer_size¶ (
int
) – Size of buffers in buffer pool for parameter offloading whenoffload_params_device
isnvme
.max_in_cpu¶ (
int
) – Number of parameter elements to maintain in CPU memory when offloading to NVMe is enabled.nvme_path¶ (
str
) – Filesystem path for NVMe device for optimizer/parameter state offloading.optimizer_buffer_count¶ (
int
) – Number of buffers in buffer pool for optimizer state offloading whenoffload_optimizer_device
is set to tonvme
. This should be at least the number of states maintained per parameter by the optimizer. For example, Adam optimizer has 4 states (parameter, gradient, momentum, and variance).block_size¶ (
int
) – When using NVMe Offloading, the I/O block size in bytes.queue_depth¶ (
int
) – When using NVMe Offloading, the I/O queue depth.single_submit¶ (
bool
) – When using NVMe Offloading, submit requests to storage device as multiple individual requests, as opposed to one block of requests.overlap_events¶ (
bool
) – When using NVMe Offloading, submit requests to storage device in an overlapped fashion without waiting for completion of earlier requests.thread_count¶ (
int
) – When using NVMe Offloading, Intra-request parallelism for each read/write submitted by a user thread.pin_memory¶ (
bool
) – When using ZeRO stage 3, pin optimizer state memory on CPU. This could boost throughput at the cost of extra memory overhead.sub_group_size¶ (
int
) – When using ZeRO stage 3, defines the number of parameters within a sub group to offload at a time. Smaller numbers require more communication, but improve memory efficiency.contiguous_gradients¶ (
bool
) – Copies gradients to a continuous buffer as they are produced. Avoids memory fragmentation during backwards. Useful when training large models.overlap_comm¶ (
bool
) – Overlap the reduction (synchronization) of gradients with the backwards computation. This is a speed optimization when training across multiple GPUs/machines.allgather_partitions¶ (
bool
) – All gather updated parameters at the end of training step, instead of using a series of broadcast collectives.reduce_scatter¶ (
bool
) – Use reduce/scatter instead of allreduce to average gradients.allgather_bucket_size¶ (
int
) – Number of elements to allgather at once. Used to limit the memory required for larger model sizes, with a tradeoff with speed.reduce_bucket_size¶ (
int
) – Number of elements to reduce at once. Used to limit the memory required for larger model sizes, with a tradeoff with speed.zero_allow_untested_optimizer¶ (
bool
) – Allow untested optimizers to be used with ZeRO. Currently only Adam is a DeepSpeed supported optimizer when using ZeRO.logging_batch_size_per_gpu¶ (
Union
[str
,int
]) – Config used in DeepSpeed to calculate verbose timing for logging on a per sample per second basis (only displayed if logging=logging.INFO). If set to “auto”, the plugin tries to infer this from the train DataLoader’s BatchSampler, else defaults to 1. To obtain accurate logs when using datasets that do not support batch samplers, set this to the actual per gpu batch size (trainer.batch_size).config¶ (
Union
[str
,Path
,Dict
[str
,Any
],None
]) – Pass in a deepspeed formatted config dict, or path to a deepspeed config: https://www.deepspeed.ai/docs/config-json. All defaults will be ignored if a config is passed in.loss_scale¶ (
float
) – Loss scaling value for FP16 training. 0.0 results in dynamic loss scaling, otherwise static.initial_scale_power¶ (
int
) – Power of the initial dynamic loss scale value. Loss scale is computed by2^initial_scale_power
.loss_scale_window¶ (
int
) – Window in which to raise/lower the dynamic FP16 loss scaling value.hysteresis¶ (
int
) – FP16 Delay shift in Dynamic Loss scaling.min_loss_scale¶ (
int
) – The minimum FP16 dynamic loss scaling value.partition_activations¶ (
bool
) – Enables partition activation when used with ZeRO stage 3 and model parallelism. Still requires you to wrap your forward functions in deepspeed.checkpointing.checkpoint. See deepspeed tutorial.cpu_checkpointing¶ (
bool
) – Offloads partitioned activations to CPU ifpartition_activations
is enabled.contiguous_memory_optimization¶ (
bool
) – Copies partitioned activations so that they are contiguous in memory. Not supported by all models.synchronize_checkpoint_boundary¶ (
bool
) – Inserttorch.cuda.synchronize()
at each checkpoint boundary.load_full_weights¶ (
bool
) – True when loading a single checkpoint file containing the model state dict when using ZeRO Stage 3. This differs from the DeepSpeed checkpoint which contains shards per worker.
- batch_to_device(batch, device=None, dataloader_idx=0)[source]¶
Moves the batch to the correct device.
The returned batch is of the same type as the input batch, just having all tensors on the correct device.
- model_sharded_context()[source]¶
Provide hook to create modules in a distributed aware context. This is useful for when we’d like to shard the model instantly, which is useful for extremely large models which can save memory and initialization time.
Returns: Model parallel context.
- save_checkpoint(checkpoint, filepath, storage_options=None)[source]¶
Save model/training states as a checkpoint file through state-dump and file-write.
- validation_step(*args, **kwargs)[source]¶
The actual validation step.
See
validation_step()
for more details
- property handles_gradient_accumulation: bool¶
Whether the plugin handles gradient accumulation internally.
- Return type